

ASX Announcement 23 October 2023

KINGSROSE INTERSECTS 9.3 METRES AT 1.0 % NICKEL AND 0.3 % COPPER AT NEWLY DISCOVERED SULPHIDE ZONE, RÅNA PROJECT, NORWAY

Kingsrose Mining Limited (ASX: KRM) (**Kingsrose** or **Company**) is pleased to announce analytical results from the first two diamond drill holes at the Rånbogen prospect, Råna Project, Norway (Figures 1 to 7 and Tables 1 and 2). Drilling has delivered high-grade massive sulphide nickel-copper-cobalt mineralisation in both holes over an interpreted strike length of 150 metres, within a previously undrilled area which is open along strike and down dip.

Highlights

Hole 23RAN002:

- High-grade massive and breccia sulphide zone returned 9.3 metres at 1.0 % Ni, 0.3 % Cu and 0.10 % Co from 176.5 metres, within a broader upper mineralised zone which returned:
 - 26.2 metres at 0.7 % Ni, 0.2 % Cu and 0.06 % Co from 169.0 metres (Hole 23RAN002, Figure 7)
- Lower mineralised zone returned 2.7 metres at 0.9 % Ni, 0.1 % Cu and 0.08 % Co from 281.9 metres (Hole 23RAN002, Figure 7)

Hole 23RAN001:

- Two semi-massive to massive sulphide zones were intercepted 150 metres northwest along strike from 23RAN002 (Figure 5)
- Semi massive to massive sulphide zone returned 2.4 metres at 0.8 % Ni, 0.2 % Cu, 0.10 % Co from 66.4 metres (Hole 23RAN001, Figure 6), within a broader mineralised interval of:
 - 10.2 metres at 0.4 % Ni, 0.1 % Cu, 0.05 % Co from 63.7 metres (Hole 23RAN001, Figure 6)
- Semi-massive sulphide lens returned 1.3 metres at 0.6 % Ni, 0.3 % Cu and 0.09 % Co from 167.9 metres (Hole 23RAN001)

Andrew Tunningley, Kingsrose Head of Exploration, commented "The discovery of a new high-grade, relatively shallow nickel-copper sulphide zone in our first holes at Rånbogen is consistent with our view that the wider Råna intrusion has substantial potential to host to significant mineralisation outside of the historical mine. The holes were planned using a combination of geological mapping, MT and EM geophysical data. There are several additional targets in the Rånbogen prospect area with similar signatures still to drill test.

Two stacked zones of sulphide mineralisation have been intercepted in holes 23RAN001 and 23RAN002, which indicates that the intrusion has experienced multiple sulphide-generative events at various stratigraphic intervals, increasing the search space and scale potential. The whole intrusion outcrops over 70 square kilometres, with mineralised prospects at surface across the exposed highly prospective lower zone of the intrusion, which remains underexplored".

Figure 1: Massive pyrrhotite-pentlandite-chalcopyrite with coarse grained pentlandite and rounded clasts of peridotite, from a 0.3 m sample that returned 2.23% Ni, 0.15% Cu, 0.20% Co, 176.83 m, 23RAN002. NQ diameter drill core.

Figure 2: Massive and net-textured pyrrhotite-pentlandite-chalcopyrite with coarse pentlandite loop textures and rounded clasts of peridotite, from a 0.3 m sample that returned 1.71% Ni, 0.26% Cu, 0.15% Co, 176.54 m, 23RAN002. NQ diameter drill core.

Figure 3: Massive pyrrhotite-pentlandite-chalcopyrite lens with sharp, cross-cutting contact to host peridotite unit. Note the fractionated chalcopyrite rich zone at the contact with host peridotite. From a 0.6 m sample that returned 1.51% Ni, 0.37% Cu, 0.15% Co, 180.0 m, 23RAN002. NQ diameter drill core.

Discussion of Results

Rånbogen

Mineralisation in 23RAN001 and 23RAN002 has been intercepted in two main zones over a strike length of 150 metres and is broadly coincident with an ovoid, east-west trending MT conductor. Strongly conductive EM modelled plates striking northwest-southeast over 300 metres occur within the MT conductor, and mineralisation in holes 23RAN001 and 23RAN002 is broadly coincident with these plates.

- Mineralisation is open along strike and down dip, as indicated by the MT and EM data (Figure 5).
- There are several other MT conductors with coincident EM plates and mineralised nickel rock chips at Rånbogen which remain untested (Figure 5).
- These targets will form the focus of the remaining drill campaign and will be subject to continued ground and borehole EM surveys to aid drill targeting.

The upper zone of mineralisation in 23RAN002 is hosted by peridotite and comprises a broad, disseminated zone of sulphide which is cross cut by a 9 metre wide zone of sulphide veins, breccia and net, semi-massive and massive pyrrhotite-pentlandite-chalcopyrite (Figures 1 to 3). The lower mineralised zone is located at the contact between norite and peridotite and is inferred to represent an intrusive sulphide breccia containing autoliths of peridotite.

- The stacked and cross-cutting nature of mineralisation indicates that there is potential for multiple sulphide-generative events, therefore multiple mineralised zones of varying scale and nickel tenor.
- Sulphide grain size is variable and includes coarse-grained pentlandite which occurs as loop textures, and coarse-grained chalcopyrite which is often concentrated at the margins of sulphide veins and intrusions.
- It is interpreted that the vari-textured host rocks, cross-cutting injected sulphide, coarse-grained pentlandite loop textures and formation of a peridotite-norite sill complex are indicative of a dynamic and multiphase intrusive system, in support of a syn-orogenic chonolith model of emplacement. Such mineral systems are fertile settings for nickel sulphide deposits worldwide.

Mineralisation in holes 23RAN001 and 23RAN002 is stratigraphically higher than mineralised outcrops in the north of the Rånbogen prospect area and the Bruvann Mine.

- This suggests that mineralisation occurs in multiple horizons associated with sills of peridotite.
- Similar, underexplored peridotite sills with elevated nickel in historical rock chips are observed along the lower zone of the intrusion including at Arnes, Storvatnet and Eiterdalen (Figure 4).
- It is inferred that the entire intrusion is prospective for the discovery of multiple mineralised lenses associated with peridotite sills and as offset lenses of mineralisation in the wall rocks.
- Exploration will continue to define additional drill targets using the proven methodology applied by Kingsrose to date.

Bruvann

Results from hole 23BRU004 have been received (Figure 8). This hole was designed to test to the west and down dip from open mineralisation in the southwest of the mined area and intercepted two low grade zones of disseminated sulphide, between 13.8 and 14.2 metres wide and 0.22 to 0.24 % Ni, hosted in peridotite. Although below the threshold for reporting of a significant intercept, these results demonstrate that the intrusion and mineralisation is open to the west along strike and down plunge, where there is potential for discovery of additional massive sulphide zones adjacent to the intrusion sidewalls or as offset bodies within the footwall host rocks.

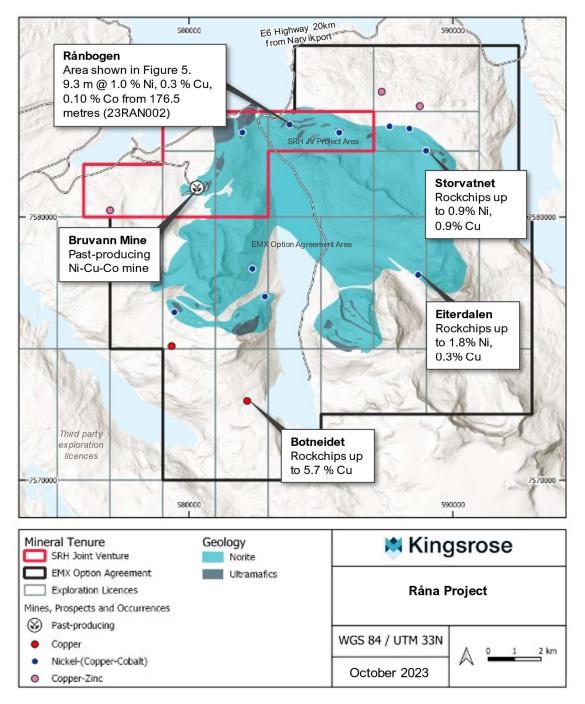


Figure 4: Råna Project area and location of the Rånbogen Prospect

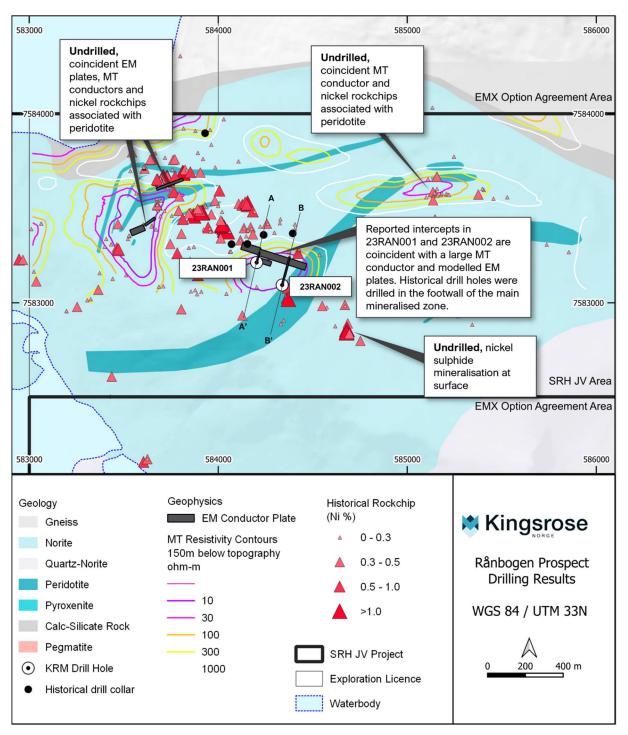


Figure 5: Map showing reported drill holes, geology, MT conductive anomalies, modelled EM plates and rock chips at the Rånbogen Prospect, Råna Project

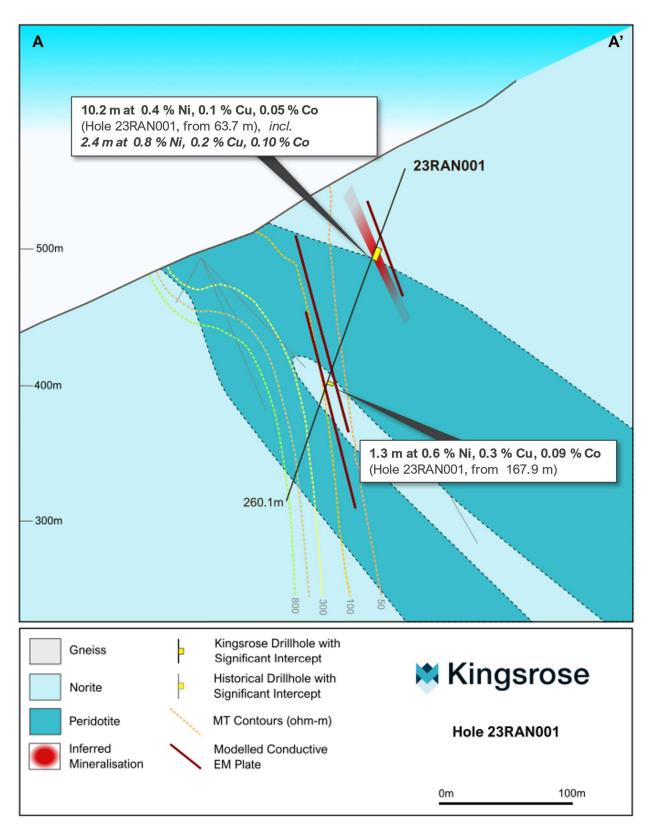


Figure 6: Cross section (A-A') showing hole 23RAN001.

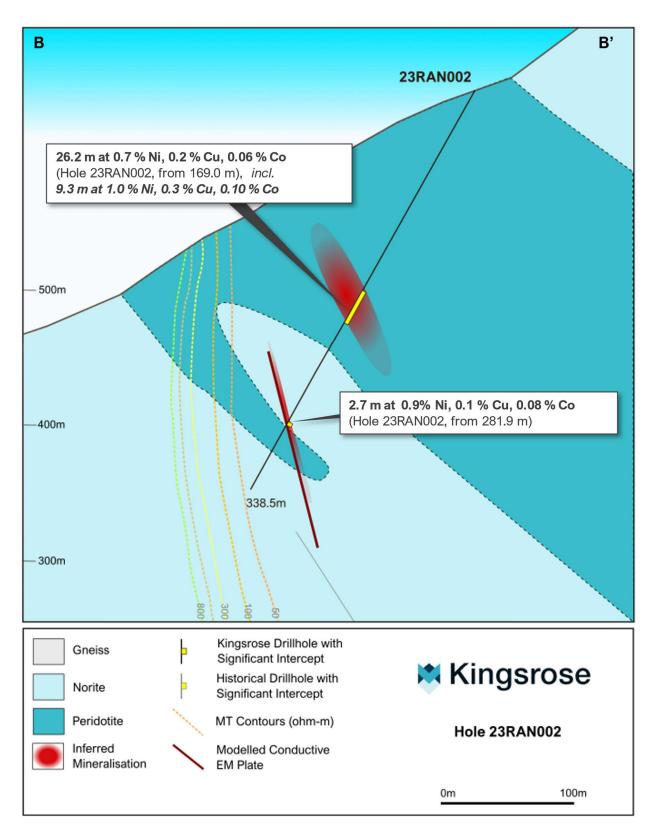


Figure 7: Cross section (Section B-B') showing hole 23RAN002.

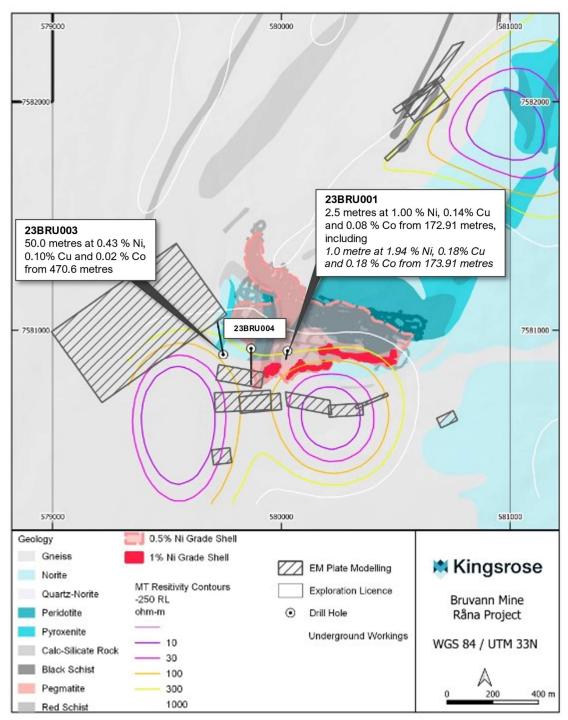


Figure 8: Map showing reported drill holes, geology, MT conductive anomalies, and modelled EM plates at the Bruvann Mine, Råna Project

Table 1: Drill collars details for reported drill holes, Råna Project, Norway

Hole ID	Easting	Northing	Elevation (m)	Inclination (°)	Azimuth (°)	Length (m)
23RAN001	584203	7583213	559	-70	15	260.1
23RAN002	584338	7583094	648	-60	15	338.5
23BRU004	579868	7580920	438	-75	180	611.9

Table 2: Significant Intercepts, Råna Project, Norway

Hole ID	From (m)	Interval (m)	Ni (%)	Cu (%)	Co (%)	
	Rånbogen Prospect					
23RAN001	63.7	10.2	0.4	0.1	0.06	
including	66.4	2.4	0.8	0.2	0.10	
	167.9	1.3	0.6	0.3	0.09	
23RAN002	169.0	26.2	0.7	0.2	0.05	
including	176.5	9.3	1.0	0.3	0.10	
	281.9	2.7	0.9	0.1	0.08	
		Bruvan	n Prospect			
23BRU001 ³	172.9	2.5	1.0	0.1	0.08	
Including	173.91	1.0	1.94	0.18	0.18	
23BRU003 ³	470.60	50.0	0.43	0.10	0.02	
23BRU004	No significant intercepts					

Notes

1. Significant intercepts were calculated using a 0.25% Ni lower cut-off and a maximum of 4 metres internal dilution.

2. Downhole interval is reported. Due to the early stage of exploration, lack of underground access due to flooding and lack of detailed structural data, it is not possible to estimate true widths.

3. See ASX Announcement dated 4 September 2023

- ENDS -

This announcement has been authorised for release to the ASX by the Board.

For further information regarding the Company and its projects please visit www.kingsrosemining.com

For more information please contact:

Fabian Baker Managing Director +61 8 9389 4494 info@kingsrose.com

About Kingsrose Mining Limited

Kingsrose Mining Limited is a leading sustainability-conscious and technically proficient mineral exploration company listed on the ASX. The Company has a discovery-focused strategy, targeting the acquisition and exploration of critical mineral deposits having Tier-1 potential, that has resulted in the acquisition of, or joint venture into, the Råna nickel-copper-cobalt, Penikat PGE and Porsanger PGE-nickel-copper projects in Finland and Norway. Additionally, Kingsrose was selected for the first cohort of the BHP Xplor exploration accelerator program which commenced in January 2023.

Forward-looking statements

This announcement includes forward-looking statements, including forward-looking statements relating to the future operation of the Company. These forward-looking statements are based on the Company's expectations and beliefs concerning future events. Forward-looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of the Company, which could cause actual results to differ materially from such statements. The Company makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement to reflect the circumstances or events after the date of this announcement.

You are strongly cautioned not to place undue reliance on forward-looking statements.

Competent Person's statement

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Andrew Tunningley, who is a Member and Chartered Professional (Geology) of the Australasian Institute of Mining and Metallurgy and is Head of Exploration for Kingsrose Mining Limited. Mr Tunningley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves." Mr Tunningley consents to the inclusion in this report of the matter based on his information in the form and context in which it appears.

Appendices

- Appendix 1 JORC Code Table 1 for the Råna Project
- Appendix 2 Assay results

Appendix 1 – JORC Code Table 1 for the Råna Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historical Drilling Historical drilling results from Outokumpu Oy and Scandinavian Highlands AS relate to split drill core. This work was not completed under the supervision of the CP and measures taken to ensure sample representivity and appropriate calibration of equipment are not known. Historical drill core sampling is observed to have been completed at semi-regular downhole intervals with breaks at major changes in lithology and mineralisation styles. Sample intervals from Outokumpu drilling range from 0.02 to 55.2 meters, with an average sample interval of 1.75 metres. Sample intervals from Scandinavian Highlands AS drilling range from 0.13 to 4.00 meters, with an average sample interval of 1.73 metres. One half of the split core was sampled and one half was retained in the core box. The samples were submitted for crushing and pulverising prior to analysis. Outokumpu assayed rocks at Outokumpu's Geoanalytical laboratory in Finland as well as the onsite Nikkel Og Olivin laboratory. Samples were analysed for total nickel using unspecified acid digestion methods (Ekberg, 1997, NGU report No. 5508). Kingsrose Drilling Diamond drilling sample intervals are designed to honor geological boundaries. Core is aligned and measured by tape, referenced to downhole core blocks. Core sampling uses sample intervals of 0.5m to 2m and domained by geological constraints (e.g. Rock types, veining and alteration, presence of mineralisation and mineralisation style). Electromagnetic Data Downhole EM surveys were completed on holes 23BRU001 and 23BRU003. The surveys were completed by Geovisor Oy and the data was modelled by Newexco Consultants Pty Ltd.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Historical Drilling Historical drilling by Outokumpu Oy was between 32 and 36 mm diameter core drilling. Drill core was not orientated. Historical drilling by Scandinavian Highlands AS was 35.6mm diameter core drilling. Drill core was not orientated. Kingsrose Drilling NQ diameter core drilling Core is oriented using DeviCore

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Historical Drilling Outokumpu drill recoveries are not known. Kingsrose observed select archived historical drill core and the drill core was intact with no material zones of core loss observed. Scandinavian Highlands AS drill recoveries were recorded in drill logs and demonstrate high (>95%) core recoveries. Method of recording sample recovery is not known. Observations on historic drill core during Kingsrose's due diligence work indicates that the drill core is very competent, and recoveries were generally above 95%. However not all mineralised intervals have been observed by Kingsrose and further re-logging of historic drill core is required. The relationship between historical sample recovery and grade has not been reported. Kingsrose Drilling Drill core recoveries are good and typically exceed 95%, measured through core recovery data including run length and recovered core length. To ensure maximum sample recovery the drill contract states a minimum core recovery of 90% and if the recovery drops below 90% the drillers and client determine whether or not to continue the hole. Sample representativity is ensured through drilling of appropriate diameter drill core for the style of mineralisation and employing a minimum sample length of 0.3 metres. No relationship between sample recovery and grade has been observed. Core recoveries are very high and no sample bias exists.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Historical Drilling Drill core samples were previously logged to a basic level of geological detail. Future drilling will be required to obtain the level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Historical logging was qualitative. There is no photographic record of historic core. All historic drill core (100%) was logged by Outokumpu Oy and Scandinavian Highlands AS. Kingsrose Drilling Drill core is geologically and geotechnically logged to a high level detail sufficient for the support of Mineral Resource estimation, mining studies. Geological and geotechnical logging records both qualitative and quantitative information, for example rock type, mineral abundances (%), fracture intensity (fractures per metre), fracture type, roughness, fill etc.

Criteria	JORC Code explanation	Commentary
		 All drill core is photographed in the core box, wet and dry, prior to cutting All drill core is logged (100%)
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, incl. for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Historical Sampling Historical operators used a mechanical splitter to split the historic drill core. Splitting the core does not result in exact halves being produced and may introduce some uncertainty as to the representivity of the historic sampling. Quality control procedures employed by historical operators are not available. No results of duplicate or second-half sampling are reported by historical operators and it is not known if this was completed. Historical sample sizes are considered appropriate to the grain size of the material being sampled. Kingsrose Drilling Core is cut into equal halves using a diamond saw. One half of the drill core is used for sampling and the other half is retained in the core box. Kingsrose drill core samples were prepared using ALS code PREP-31Y, crushing entire sample to >70% passing 2mm and rotary split off 250g using a rotary splitter. Split was pulverised to >85% passing 75 micron. Blanks, duplicates and certified reference materials were inserted into the sample stream at a rate of 1 blank and standard for every 20 samples Duplicate samples are used to ensure sampling is representative of the in-stu material collected and the data confirm that sampling is representative. Sample sizes are appropriate.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis incl. instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Historical Drilling The details of historic assaying and laboratory procedures are not known. Quality control procedures employed by Outokumpu Oy are not known and it is not possible to determine the levels of accuracy and precision for historic assays reported. Verification sampling by Kingsrose is required to ascertain the reliability of historic assays. Kingsrose Drilling Kingsrose samples were analysed by lead fire assay with ICP-AES finish for Au, Pt and Pd (ALS code PGM-ICP24) as well as 48 element four acid total digestion (ME-MS61). ME-MS61 and PGM-ICP24 are considered as total techniques. ALS routinely insert certified reference and blank material as part of their internal quality control procedures and to ensure acceptable levels of

Criteria	JORC Code explanation	Commentary
		 accuracy and precision are achieved. These results have been reviewed by Kingsrose. The results of Kingsrose blanks, certified reference materials and comparison with historical results indicate that acceptable levels of accuracy and precision have been established.
		Electromagnetic Data
		• The downhole electromagnetic surveys were carried out using a Zonge ZT30 transmitter and EMIT digiAtlantis probe. The data were recorded at 1 Hz consistent with target conductances between 100 and 10,000 S for disseminated to massive style targets. Transmit currents approach 30 A.
		• Data were recorded at 24 kHz, with 64 stacks per reading; 3 consistent readings per station were requested from the crew. This ensured an optimal signal to noise ratio in this environment. Models were generated after data sanitation in EMIT programme Maxwell.
		• The fixed loop electromagnetic surveys were carried out using two receiver units for higher productivity. Equipment comprised a Zonge ZT30 transmitter (estimated current in the transmitter loop of 25-30A), two EMIT SMARTem24 receivers plus SMART Fluxgate, and a Hoda EU-65is 5500 W generator.
		The measurements were done using two separate acquisition systems. The first part of the processing was done using SMARTem24 software. The first step was to merge the datasets from the two separate systems into a single project. Then the data was reprocessed from the raw data to ensure the data integrity using the original time windowing scheme. After this, the bad readings were deleted (outliers), and the data quality (raw data) and acquisition parameters were checked.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Kingsrose has reassayed select historical drill intercepts and results show that significant intercepts are comparable between the two data sets with no significant error or bias. Historical drill core has been observed and confirms the presence of disseminated to massive sulphide mineralisation composed of pentlandite, chalcopyrite and pyrrhotite. The observed sulphide mineralised intervals correspond with mineralised intervals reported in historical assay sheets.
		• There are no twin holes.
		 Historical data was recorded on hard copy logs. Historical entry, verification, storage and protocols are not known.
		• There has been no adjustment to assay data.
		• Kingsrose uses MX Deposit and Imago software for data entry, verification, quality control, logging data and core photography. The data is stored on the cloud and is also exported and saved on Kingsrose's internal data drives as a backup and for use in geological modelling software.

Criteria	JORC Code explanation	Commentary
		• There has been no verification of Kingsrose significant intercepts by independent personnel. Kingsrose employs project geologists and an exploration manager at the Råna project, and the significant intercepts were verified by the company's Head of Exploration.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Methodology and quality of surveys used to locate historical drill holes, trenches and mine workings are not known. However, several historical drill holes have been located in the field using handheld GPS at the correct locations indicated in historical reports. Kingsrose drill holes were located using handheld GPS. The grid system used is ETRS89, Zone 33. Topographic control is by publicly available LIDAR mapping data and is considered adequate for reporting of Exploration Results.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historical exploration drill holes were located 20 to 150 m apart. Kingsrose exploration holes are variably spaced dependent on the exploration target characteristics. No Mineral Resource or Ore Reserve estimations are being reported. No sample compositing has been applied. Fixed loop electromagnetic surveys comprised two loops of 200x200 m and 300x300 m at 25 m to 50 m station spacing. Downhole EM was conducted at 10 m station spacing.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Historical drilling was angled perpendicular to the mapped mineralisation at surface to achieve unbiased sampling. Given the early stage of exploration Rånbogen the true width of mineralisation cannot be estimated. Localised deviations in the dip and strike of mineralisation may cause overestimation of true thicknesses given the early stage of exploration, and future drilling is required to better understand the morphology of the mineralisation. Geophysical surveys were oriented normal to lithological contacts and mineralisation, where possible. Kingsrose drilling was oriented perpendicular to the inferred dip and strike of mineralisation. However as these are early exploration drill holes into open areas of the deposit it is not possible to estimate the true thickness of mineralisation at this time.
Sample security	The measures taken to ensure sample security.	 Historical procedures to ensure sample security are not known. Kingsrose sampling was performed by Kingsrose employees in a secure logging facility, and samples were shipped by courier in sealed containers to the sample preparation laboratory.

Criteria	JORC Code explanation	Commentary
		Samples are checked on arrival for signs of tampering before being accepted into the custody of the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 There have been no audits of drilling sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	 d • Type, reference name/number, location and ownership incl. agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historic sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 SRH Joint Venture Agreement The project comprises five contiguous licences totalling 28km², located in Nordland County, northern Norway. The exploration licences were granted in March 2019 and expire March 2026, with potential for up to 3 year extension on application (March 2029) The exploration licences are registered to Narvik Nikkel AS, with a 10% beneficial interest owned by GEMC and 90% by Narvik Nikkel AS. Four royalties totalling 3.5 % in place comprising 1 % NSR held by Chincherinchee Pty; 1 % NSR purchased by GEMC for 3.3m shares in July 2021; 1 % NSR purchased by Electric Royalties for 2m shares and \$100k cash, and 0.5% state royalty To conduct exploration there is a 'duty to notify' requirement in accordance with the Norwegian Mining Act: Non-invasive surface work involves a one week notification (e.g. geophysics, soil/stream/chip sampling) and invasive work requires a two month notification period (e.g. drilling, trenching). The notification period (e.g. drilling, trenching). The notification is sent to the municipality, county municipality and county governor. The project is operated under a JV with the 		
		following milestones in place: Completion Milestone Consideration		
		FirstThe incorporation of the JV10,000 Company shares shares will be issued capital of in JV10,000 		

Criteria	JORC Code explanation	Commentary		
Criteria	JORC Code explanation	Commentary	allotted to SRH; and 10,000 JV Company shares issued and allotted to GEMC; and SRH and GEMC transfer each of the Exploration Licences to the JV Company, (First Milestone). Kingsrose (or a related body corporate) (Manager), incurring expenditure of at least A\$3 million (minus the Licence Fees Amount) within 3 years from the date of First Completion including not less than: A\$1 million to include 2,000 metres of drilling by 31 December 2023; and 3,000 metres of drilling and preliminary metallurgist test work by 31	into the capital of JV Company (A\$20,300 based on NOK:A\$ exchange rate of 0.145). A\$30,000 to be paid by the Company to SRH. 94,617 JV Company shares will be issued and allotted to the Company. 10,513 JV Company shares will be issued and allotted to GEMC. 1,000,000 KRM Shares will be issued and allotted to SRH.
		Third	December 2024, (Second Milestone). Expenditure by the Manager of at	103,391 JV Company
		(For 65% of shares in JV Company)	the Manager of at least an additional \$4 million within 2 years following Second Completion (Third Milestone)	shares will be issued and allotted to the Company. 3,500,000 KRM Shares

Criteria	JORC Code explanation	Commentary		
				will be issued and allotted to SRH. \$250,000 to be paid by the Company to SRH.
		Fourth (For 75% of shares in JV Company)	Expenditure by the Manager of at least an additional \$8 million within 3 years following Third Completion (Fourth Milestone)	10,000 JV Company shares will be issued and allotted to the Company. A cash payment of \$750,000 to be paid by the Company to SRH.
		EMX Option A	Agreement	
		totalling 18 northern N granted in	t comprises 19 contig 3km ² , located in Norc orway. The exploratic May 2022 and expire r up to 3 year extensi	lland County, n licences were May 2029, with
		acquire 100 making A\$ and b) mak A\$100,000 A\$150,000	's length transaction, 0% interest in the Rån 30,000 cash payment king another cash pay and spending a mini on exploration during od. Upon exercise of will:	na project by a) t upon execution ment of mum of g a 12-month
		the Project after closin purchase 0	IX with a 2.5% NSR r . On or before the eig g, Kingsrose has the 0.5% of the NSR on th X A\$1,200,000.	hth anniversary option to
		will spend a A\$150,000 A\$350,000 A\$350,000 agreement	n its interest in the Pro- additional exploration by the second anniver by the third annivers by the fourth anniver , respectively, for a to 00 in exploration expe	expenditures of ersary, ary, and sary of the tal of
		payments o anniversar payment in	eceive annual advanc of A\$25,000 commen y of the agreement, w creasing 10% each y d at an annual payme	cing on the third ith the AAR ear thereafter

Criteria	JORC Code explanation	Commentary
		 A milestone cash payment of A\$250,000 will be made to EMX upon completion of the first 10,000 meters of drilling at the Project. An additional milestone cash payment of A\$500,000, will be made to EMX upon disclosure of a maiden resource.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 1880-2002: Historical exploration and mining The following is summarised from Jebens, 2013: Small scale artisanal mining at Råna dates back to 1880. Between 1915 and 1937, 1299 meters of drilling was completed by Bjørkåsen Gruber and Raffineringsverket Kristiansand. A 700 metre drift and 4035 metres drilling was completed during the Second World War (operator unknown) Between 1970-1975 Stavanger Steel and the Norwegian Geological Survey (NGU) completed 24,743 metres of drilling and 'geophysical surveys' In 1989 Nikkel og Olivin AS, a private Norwegian company, commenced mining In 1993 Outokumpu bought Nikkel og Olivin AS and operated the mine until it closed in 2002. The mine is reported to have produced 8.5 Mt at 0.52% Ni in total. 2002-2007: Exploration In 2004 the project was explored by Scandinavian Highlands AS, a private company. Work included a 185 line km SkyTEM geophysical survey, 2km² ground magnetic survey, 4000 soil samples and 400 rock chip samples In 2006 Scandinavian Highlands AS completed 17 diamond drill holes for 3982.90 metres at the Rånbogen and Arnes prospects. 2019-2022 In 2019 Scandinavian Resource Holdings acquired the exploration rights to 25km² of the Råna intrusion including the Bruvann mine,
Geology	Deposit type, geological setting and style of mineralisation.	 Rånbogen and Arnes prospects. The Råna intrusion (436.9 +1 -2 Ma) is a large (~11km east to west x 9km north to south, in total, approximately 70 km²) mafic-ultramafic intrusion 3,800m thick emplaced into argillaceous metasediments during the Scandian orogeny. The Råna intrusion morphology shows internal characteristics that are consistent with a conduit-style of emplacement such as possible compartmentalisation into separate "sub-sills"

Criteria	JORC Code explanation	Commentary
	JORC Code explanation	 Commentary The upper parts of the intrusion appear to be more massive in their character, thicker and possibly more laterally extensive than the lower, more ultramafic section. The intrusion has several indicators of emplacement as a relatively aqueous magma, including ubiquitous phlogopite, melt patches, and anastomosing veins and pegmatites. Sulphide mineralisation is located at several localities forming isolated bodies within the lower part of the intrusion. Mineralisation occurs as disseminated, net textured semi-massive and massive styles, composed of pyrrhotite, chalcopyrite and pentlandite. Rare pentlandite loops are observed in the massive mineralisation. Mineralisation at the Bruvann mine occurs over a zone of at least 600 by 500 by 500 metres at the contact between peridotite-pyroxenite and the gneiss footwall, locally compartmentalised into the intrusion as large xenoliths. Rånbogen is defined by a 1.4km long zone of anomalous nickel-copper in soils which coincides with several mapped zones of ultramafic sills and outcropping zones of massive and disseminated sulphide mineralisation. Historical rock chip sampling from this prospect includes 30 samples exceeding 1% Ni and up to 2.3% Ni, coincident with shallow conductors identified from the 2006 SkyTEM survey. In 2006, the southeastern part of the Rånbogen prospect was drilled by SRH with 10 holes totalling 2431.4 metres. All holes intercepted disseminated sulphide mineralisation with narrow zones of massive sulphide which remain open. At both prospects, mineralisation with only localised zones of minor oxidation. The intrusion is largely non-deformed and unaltered, with only localised patchy actinolite-tremolite alteration in proxenite units.
Drill hole Information	 A summary of all information material to the understanding of the exploration results incl. a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• See Table 1.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intercepts from historic drill holes are reported as weighted averages. Significant intercepts are reported using a lower cut off of 0.25 % nickel. No metal equivalent values are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All intercepts are reported as downhole lengths. The geometry of mineralised zones are not well understood due to the early stage of exploration and only down hole length is reported. True width is not known.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Maps and sections are provided in the body of the report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• See Table 2 and Appendix 2.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported incl. (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Production from Bruvann Mine is reported to have totalled 8.5 Mt @ 0.5 % Ni, 0.1 % Cu and 0.03 % Co from approximately 25km of underground workings, with life of mine recoveries reported as 74% Ni, 85 % Cu and 62 % Co.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, incl. the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Kingsrose intends to complete mapping, relogging of historical drill core and pXRF analysis of surface exposures and historical drill core in order to build a 3D geological and lithogeochemical model of the intrusion. A minimum of 2000 metres drilling is required to be completed before the end of December 2023 to maintain the SRH JV agreement. To date Kingsrose has completed >2000 metres drilling. Kingsrose has signed a 5000 metre diamond drill contract with Norse Drilling for the Råna project. Drilling is currently in progress. Follow up geophysical surveys including ground EM and downhole EM are planned.

Appendix 2 – Assay Data

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Со
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN001	3.63	5.10	1.47	10471	0.01	0.00	0.00
23RAN001	5.10	6.10	1.00	10472	0.02	0.01	0.00
23RAN001	6.10	6.60	0.50	10473	0.25	0.10	0.05
23RAN001	6.60	7.55	0.95	10183	0.04	0.01	0.01
23RAN001	7.55	8.55	1.00	10474	0.02	0.00	0.00
23RAN001	8.55	10.00	1.45	10476	0.04	0.03	0.01
23RAN001	10.00	10.95	0.95	10477	0.18	0.09	0.03
23RAN001	10.95	12.78	1.83	10478	0.17	0.05	0.03
23RAN001	12.78	14.10	1.32	10479	0.04	0.02	0.01
23RAN001	14.10	14.85	0.75	10481	0.12	0.03	0.02
23RAN001	14.85	15.30	0.45	10482	0.33	0.12	0.05
23RAN001	15.30	15.85	0.55	10483	0.22	0.08	0.04
23RAN001	15.85	17.00	1.15	10484	0.21	0.10	0.03
23RAN001	17.00	17.45	0.45	10485	0.18	0.06	0.03
23RAN001	17.45	18.00	0.55	10486	0.24	0.05	0.04
23RAN001	18.00	19.00	1.00	10487	0.04	0.00	0.01
23RAN001	19.00	20.11	1.11	10488	0.04	0.00	0.01
23RAN001	20.11	20.95	0.84	10489	0.22	0.10	0.04
23RAN001	20.95	21.40	0.45	10491	0.23	0.14	0.04
23RAN001	21.40	22.20	0.80	10492	0.26	0.10	0.04
23RAN001	22.20	22.70	0.50	10493	0.25	0.10	0.04
23RAN001	22.70	23.00	0.30	10494	0.64	0.24	0.09
23RAN001	23.00	23.36	0.36	10496	0.04	0.00	0.01
23RAN001	23.36	23.66	0.30	10497	0.46	0.18	0.07
23RAN001	23.66	24.36	0.70	10498	0.17	0.07	0.03
23RAN001	24.36	24.67	0.31	10499	0.36	0.09	0.05
23RAN001	24.67	25.16	0.49	10500	0.08	0.03	0.02
23RAN001	25.16	25.80	0.64	10502	0.04	0.00	0.01
23RAN001	25.80	26.53	0.73	10503	0.16	0.04	0.03
23RAN001	26.53	27.37	0.84	10504	0.36	0.08	0.05
23RAN001	27.37	28.37	1.00	10505	0.06	0.02	0.01
23RAN001	28.37	30.35	1.98	10506	0.05	0.02	0.01
23RAN001	30.35	31.60	1.25	10507	0.01	0.01	0.01
23RAN001	31.60	33.60	2.00	10508	0.03	0.01	0.01
23RAN001	33.60	35.30	1.70	10509	0.06	0.03	0.01
23RAN001	35.30	36.78	1.48	10511	0.09	0.04	0.01
23RAN001	36.78	38.24	1.46	10512	0.04	0.02	0.01
23RAN001	38.24	39.87	1.63	10513	0.18	0.06	0.02

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Co
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN001	39.87	40.53	0.66	10514	0.21	0.08	0.02
23RAN001	40.53	41.90	1.37	10516	0.02	0.01	0.00
23RAN001	41.90	42.50	0.60	10517	0.05	0.01	0.00
23RAN001	42.50	43.90	1.40	10518	0.03	0.01	0.00
23RAN001	43.90	45.11	1.21	10520	0.13	0.03	0.01
23RAN001	45.11	47.11	2.00	10521	0.02	0.01	0.00
23RAN001	47.11	49.11	2.00	10522	0.01	0.00	0.00
23RAN001	49.11	51.11	2.00	10523	0.01	0.00	0.00
23RAN001	51.11	53.00	1.89	10524	0.02	0.00	0.00
23RAN001	53.00	54.00	1.00	10525	0.02	0.01	0.01
23RAN001	54.00	55.20	1.20	10526	0.01	0.00	0.00
23RAN001	55.20	56.04	0.84	10527	0.05	0.02	0.01
23RAN001	56.04	56.70	0.66	10528	0.01	0.00	0.00
23RAN001	56.70	58.70	2.00	10529	0.02	0.01	0.00
23RAN001	58.70	60.20	1.50	10531	0.04	0.01	0.01
23RAN001	60.20	60.50	0.30	10532	0.20	0.06	0.02
23RAN001	60.50	61.30	0.80	10533	0.03	0.01	0.00
23RAN001	61.30	61.65	0.35	10534	0.04	0.01	0.01
23RAN001	61.65	62.35	0.70	10536	0.13	0.05	0.02
23RAN001	62.35	63.65	1.30	10537	0.14	0.05	0.02
23RAN001	63.65	64.90	1.25	10538	0.31	0.15	0.04
23RAN001	64.90	65.90	1.00	10539	0.25	0.09	0.03
23RAN001	65.90	66.40	0.50	10541	0.71	0.23	0.09
23RAN001	66.40	66.90	0.50	10542	0.75	0.33	0.10
23RAN001	66.90	67.40	0.50	10543	0.63	0.28	0.08
23RAN001	67.40	67.90	0.50	10544	0.94	0.07	0.12
23RAN001	67.90	68.40	0.50	10545	0.93	0.14	0.12
23RAN001	68.40	68.80	0.40	10546	0.81	0.28	0.10
23RAN001	68.80	69.80	1.00	10547	0.21	0.07	0.03
23RAN001	69.80	71.80	2.00	10548	0.18	0.06	0.03
23RAN001	71.80	72.57	0.77	10549	0.14	0.04	0.02
23RAN001	72.57	72.97	0.40	10551	0.30	0.09	0.04
23RAN001	72.97	73.33	0.36	10552	0.52	0.28	0.07
23RAN001	73.33	73.88	0.55	10553	0.33	0.10	0.04
23RAN001	73.88	74.70	0.82	10554	0.03	0.01	0.01
23RAN001	139.20	141.20	2.00	10556	0.12	0.01	0.01
23RAN001	141.20	142.20	1.00	10557	0.12	0.01	0.01
23RAN001	142.20	143.30	1.10	10558	0.61	0.11	0.03
23RAN001	143.30	144.50	1.20	10559	0.28	0.05	0.02
23RAN001	144.50	146.50	2.00	10561	0.12	0.01	0.01

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Co
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN001	146.50	148.50	2.00	10562	0.16	0.02	0.01
23RAN001	148.50	149.50	1.00	10563	0.17	0.02	0.01
23RAN001	149.50	150.50	1.00	10564	0.58	0.11	0.03
23RAN001	150.50	151.50	1.00	10565	0.12	0.01	0.01
23RAN001	151.50	153.50	2.00	10566	0.10	0.01	0.01
23RAN001	153.50	155.50	2.00	10567	0.09	0.01	0.01
23RAN001	155.50	157.50	2.00	10568	0.13	0.02	0.01
23RAN001	157.50	159.50	2.00	10569	0.15	0.02	0.01
23RAN001	159.50	160.90	1.40	10571	0.09	0.01	0.01
23RAN001	160.90	161.85	0.95	10572	0.08	0.01	0.01
23RAN001	161.85	163.70	1.85	10573	0.11	0.02	0.01
23RAN001	163.70	164.40	0.70	10574	0.17	0.06	0.03
23RAN001	164.40	165.50	1.10	10576	0.11	0.02	0.02
23RAN001	165.50	167.50	2.00	10577	0.04	0.01	0.01
23RAN001	167.50	167.90	0.40	10579	0.17	0.06	0.03
23RAN001	167.90	168.30	0.40	10580	0.40	0.16	0.06
23RAN001	168.30	168.70	0.40	10581	0.83	0.37	0.11
23RAN001	168.70	169.20	0.50	10582	0.66	0.38	0.09
23RAN001	169.20	169.60	0.40	10583	0.14	0.04	0.02
23RAN001	169.60	170.00	0.40	10584	0.18	0.06	0.02
23RAN001	170.00	170.30	0.30	10585	0.33	0.12	0.04
23RAN001	170.30	170.80	0.50	10586	0.22	0.05	0.03
23RAN001	170.80	171.30	0.50	10587	0.09	0.03	0.01
23RAN001	171.30	172.30	1.00	10588	0.04	0.02	0.01
23RAN001	172.30	174.00	1.70	10589	0.06	0.02	0.01
23RAN001	174.00	174.70	0.70	10591	0.16	0.05	0.02
23RAN001	174.70	176.70	2.00	10592	0.23	0.08	0.03
23RAN001	176.70	177.90	1.20	10593	0.17	0.04	0.02
23RAN001	177.90	179.90	2.00	10594	0.07	0.02	0.01
23RAN001	179.90	181.50	1.60	10596	0.05	0.02	0.01
23RAN001	181.50	182.30	0.80	10597	0.02	0.01	0.00
23RAN001	182.30	182.90	0.60	10598	0.13	0.08	0.02
23RAN001	182.90	184.90	2.00	10599	0.02	0.01	0.01
23RAN001	239.10	240.30	1.20	10601	0.01	0.00	0.00
23RAN001	240.30	240.80	0.50	10602	0.27	0.05	0.02
23RAN001	240.80	241.80	1.00	10603	0.30	0.06	0.02
23RAN001	241.80	242.80	1.00	10604	0.33	0.06	0.02
23RAN001	242.80	243.80	1.00	10605	0.21	0.04	0.02
23RAN001	243.80	244.80	1.00	10606	0.15	0.03	0.01
23RAN001	244.80	246.55	1.75	10607	0.27	0.05	0.02

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Со
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN001	246.55	247.50	0.95	10608	0.23	0.05	0.01
23RAN001	247.50	249.50	2.00	10609	0.02	0.00	0.00
23RAN002	165.79	166.30	0.51	10611	0.03	0.00	0.00
23RAN002	166.30	167.00	0.70	10612	0.13	0.01	0.01
23RAN002	167.00	168.00	1.00	10613	0.13	0.01	0.01
23RAN002	168.00	169.00	1.00	10614	0.15	0.01	0.01
23RAN002	169.00	170.00	1.00	10616	0.32	0.09	0.02
23RAN002	170.00	171.00	1.00	10617	0.34	0.10	0.03
23RAN002	171.00	171.50	0.50	10618	0.33	0.08	0.03
23RAN002	171.50	172.00	0.50	10619	0.31	0.05	0.03
23RAN002	172.00	172.50	0.50	10621	0.28	0.07	0.02
23RAN002	172.50	173.00	0.50	10622	0.16	0.03	0.02
23RAN002	173.00	173.50	0.50	10623	0.27	0.06	0.02
23RAN002	173.50	174.00	0.50	10624	0.19	0.04	0.02
23RAN002	174.00	174.50	0.50	10625	0.28	0.06	0.02
23RAN002	174.50	175.00	0.50	10626	0.24	0.05	0.02
23RAN002	175.00	175.64	0.64	10627	0.21	0.04	0.02
23RAN002	175.64	175.94	0.30	10628	0.37	0.27	0.04
23RAN002	175.94	176.24	0.30	10629	0.76	0.46	0.08
23RAN002	176.24	176.54	0.30	10631	0.74	0.31	0.07
23RAN002	176.54	176.83	0.29	10632	1.71	0.26	0.15
23RAN002	176.83	177.13	0.30	10633	2.23	0.15	0.20
23RAN002	177.13	177.43	0.30	10634	0.43	0.06	0.04
23RAN002	177.43	177.74	0.31	10636	1.81	0.17	0.16
23RAN002	177.74	178.04	0.30	10637	0.39	0.25	0.04
23RAN002	178.04	178.34	0.30	10638	1.30	0.65	0.12
23RAN002	178.34	178.71	0.37	10639	1.94	0.35	0.17
23RAN002	178.71	179.23	0.52	10640	0.19	0.45	0.02
23RAN002	179.23	179.60	0.37	10641	0.43	0.32	0.04
23RAN002	179.60	180.00	0.40	10642	0.21	0.07	0.02
23RAN002	180.00	180.64	0.64	10643	1.51	0.38	0.15
23RAN002	180.64	180.94	0.30	10645	0.33	0.77	0.03
23RAN002	180.94	181.26	0.32	10646	0.26	0.04	0.02
23RAN002	181.26	181.56	0.30	10647	0.64	0.36	0.07
23RAN002	181.56	181.86	0.30	10648	0.36	0.36	0.04
23RAN002	181.86	182.16	0.30	10649	1.63	0.42	0.16
23RAN002	182.16	182.90	0.74	10651	1.80	0.17	0.17
23RAN002	182.90	183.33	0.43	10652	0.26	0.04	0.02
23RAN002	183.33	183.63	0.30	10653	1.05	0.84	0.10
23RAN002	183.63	183.93	0.30	10654	0.14	0.24	0.02

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Co
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN002	183.93	184.60	0.67	10656	1.37	0.31	0.14
23RAN002	184.60	184.90	0.30	10657	1.85	0.55	0.18
23RAN002	184.90	185.20	0.30	10658	0.58	0.20	0.06
23RAN002	185.20	185.50	0.30	10659	0.80	0.25	0.08
23RAN002	185.50	185.80	0.30	10661	1.03	0.27	0.10
23RAN002	185.80	186.18	0.38	10662	0.48	0.30	0.05
23RAN002	186.18	186.48	0.30	10663	0.96	1.03	0.10
23RAN002	186.48	186.78	0.30	10664	0.90	0.91	0.09
23RAN002	186.78	187.31	0.53	10665	0.71	0.38	0.07
23RAN002	187.31	187.61	0.30	10666	0.81	0.26	0.08
23RAN002	187.61	187.91	0.30	10667	0.29	0.10	0.05
23RAN002	187.91	188.36	0.45	10668	0.63	0.24	0.07
23RAN002	188.36	188.76	0.40	10669	1.21	0.21	0.12
23RAN002	188.76	189.58	0.82	10671	0.47	0.14	0.05
23RAN002	189.58	189.98	0.40	10672	0.57	0.26	0.06
23RAN002	189.98	190.30	0.32	10673	0.88	0.41	0.09
23RAN002	190.30	190.65	0.35	10674	0.28	0.06	0.03
23RAN002	190.65	191.00	0.35	10675	0.46	0.08	0.05
23RAN002	191.00	191.38	0.38	10676	0.25	0.10	0.03
23RAN002	191.38	191.88	0.50	10677	0.20	0.05	0.03
23RAN002	191.88	192.28	0.40	10678	0.19	0.04	0.02
23RAN002	192.28	192.60	0.32	10679	0.17	0.04	0.02
23RAN002	192.60	192.90	0.30	10680	0.98	0.55	0.10
23RAN002	192.90	193.30	0.40	10681	0.32	0.20	0.04
23RAN002	193.30	193.70	0.40	10682	0.14	0.03	0.02
23RAN002	193.70	194.00	0.30	10683	0.20	0.05	0.03
23RAN002	194.00	194.34	0.34	10684	0.15	0.03	0.02
23RAN002	194.34	194.74	0.40	10685	0.38	0.35	0.04
23RAN002	194.74	195.19	0.45	10686	2.13	0.08	0.22
23RAN002	195.19	195.49	0.30	10688	0.03	0.01	0.01
23RAN002	195.49	195.90	0.41	10689	0.13	0.02	0.01
23RAN002	195.90	196.30	0.40	10690	0.15	0.03	0.02
23RAN002	196.30	196.67	0.37	10691	0.15	0.02	0.02
23RAN002	196.67	197.10	0.43	10692	0.17	0.03	0.02
23RAN002	197.10	197.50	0.40	10693	0.17	0.03	0.02
23RAN002	197.50	197.90	0.40	10694	0.18	0.03	0.02
23RAN002	197.90	198.31	0.41	10696	0.15	0.06	0.02
23RAN002	198.31	198.71	0.40	10697	0.18	0.03	0.02
23RAN002	198.71	199.10	0.39	10698	0.14	0.03	0.02
23RAN002	199.10	199.90	0.80	10699	0.24	0.07	0.03

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Co
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN002	199.90	200.60	0.70	10701	0.24	0.06	0.03
23RAN002	200.60	201.29	0.69	10702	0.25	0.07	0.03
23RAN002	201.29	202.68	1.39	10703	0.24	0.04	0.02
23RAN002	202.68	203.69	1.01	10704	0.24	0.04	0.02
23RAN002	203.69	204.39	0.70	10705	0.30	0.08	0.03
23RAN002	204.39	204.70	0.31	10706	0.35	0.09	0.04
23RAN002	204.70	205.70	1.00	10707	0.31	0.09	0.03
23RAN002	205.70	206.70	1.00	10708	0.30	0.08	0.03
23RAN002	206.70	207.30	0.60	10709	0.30	0.08	0.03
23RAN002	207.30	207.65	0.35	10711	0.15	0.02	0.01
23RAN002	207.65	207.95	0.30	10712	0.21	0.04	0.02
23RAN002	207.95	208.35	0.40	10713	0.22	0.05	0.02
23RAN002	208.35	208.75	0.40	10714	0.21	0.04	0.02
23RAN002	208.75	209.20	0.45	10716	0.30	0.08	0.02
23RAN002	209.20	209.70	0.50	10717	0.19	0.05	0.02
23RAN002	209.70	210.10	0.40	10718	0.27	0.07	0.02
23RAN002	210.10	210.40	0.30	10719	0.19	0.04	0.02
23RAN002	210.40	210.80	0.40	10720	0.26	0.05	0.02
23RAN002	210.80	211.22	0.42	10721	0.14	0.03	0.01
23RAN002	211.22	211.52	0.30	10722	0.11	0.01	0.01
23RAN002	211.52	212.42	0.90	10723	0.23	0.04	0.02
23RAN002	212.42	213.42	1.00	10724	0.07	0.01	0.01
23RAN002	253.00	254.00	1.00	10726	0.10	0.03	0.01
23RAN002	254.00	255.00	1.00	10727	0.13	0.04	0.02
23RAN002	255.00	255.54	0.54	10728	0.07	0.03	0.01
23RAN002	255.54	255.89	0.35	10729	0.23	0.18	0.04
23RAN002	255.89	256.19	0.30	10731	0.23	0.17	0.04
23RAN002	256.19	256.54	0.35	10732	0.16	0.16	0.03
23RAN002	256.54	256.89	0.35	10733	0.48	0.08	0.08
23RAN002	256.89	257.50	0.61	10734	0.07	0.01	0.01
23RAN002	257.50	258.00	0.50	10736	0.04	0.01	0.01
23RAN002	258.00	259.00	1.00	10737	0.04	0.01	0.01
23RAN002	280.15	281.15	1.00	10738	0.01	0.00	0.00
23RAN002	281.15	281.86	0.71	10739	0.06	0.02	0.01
23RAN002	281.86	282.21	0.35	10741	0.60	0.10	0.05
23RAN002	282.21	282.51	0.30	10742	0.39	0.23	0.04
23RAN002	282.51	282.95	0.44	10743	0.90	0.28	0.08
23RAN002	282.95	283.35	0.40	10744	1.16	0.10	0.11
23RAN002	283.35	283.80	0.45	10745	0.94	0.12	0.09
23RAN002	283.80	284.20	0.40	10746	1.20	0.07	0.11

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Co
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN002	284.20	284.60	0.40	10747	0.96	0.03	0.08
23RAN002	284.60	284.90	0.30	10748	0.05	0.01	0.01
23RAN002	284.90	285.50	0.60	10749	0.07	0.01	0.01
23RAN002	285.50	286.50	1.00	10750	0.05	0.01	0.01
23RAN002	286.50	287.50	1.00	10751	0.05	0.02	0.01
23RAN002	287.50	288.36	0.86	10752	0.09	0.02	0.01
23RAN002	288.36	288.76	0.40	10753	0.21	0.14	0.02
23RAN002	288.76	289.13	0.37	10755	0.49	0.39	0.05
23RAN002	289.13	289.51	0.38	10756	0.49	0.46	0.05
23RAN002	289.51	289.81	0.30	10758	0.60	0.33	0.05
23RAN002	289.81	290.04	0.23	10759	0.11	0.21	0.01
23RAN002	290.04	290.56	0.52	10760	0.19	0.05	0.02
23RAN002	290.56	291.40	0.84	10761	0.15	0.04	0.02
23RAN002	291.40	291.90	0.50	10762	0.04	0.01	0.00
23RAN002	291.90	292.50	0.60	10764	0.03	0.00	0.00
23RAN002	292.50	293.50	1.00	10765	0.08	0.03	0.01
23RAN002	293.50	293.80	0.30	10766	0.89	0.17	0.08
23RAN002	293.80	294.10	0.30	10767	0.90	0.09	0.08
23RAN002	294.10	294.40	0.30	10768	0.12	0.03	0.01
23RAN002	294.40	295.00	0.60	10769	0.21	0.04	0.02
23RAN002	295.00	295.50	0.50	10770	0.18	0.03	0.01
23RAN002	295.50	296.00	0.50	10771	0.29	0.04	0.02
23RAN002	296.00	296.50	0.50	10772	0.24	0.03	0.02
23RAN002	296.50	297.00	0.50	10773	0.21	0.03	0.02
23RAN002	297.00	297.50	0.50	10774	0.12	0.03	0.01
23RAN002	297.50	298.00	0.50	10776	0.12	0.04	0.01
23RAN002	298.00	298.50	0.50	10777	0.20	0.03	0.02
23RAN002	298.50	299.00	0.50	10778	0.12	0.04	0.01
23RAN002	299.00	299.50	0.50	10779	0.13	0.03	0.01
23RAN002	299.50	300.00	0.50	10781	0.06	0.01	0.01
23RAN002	300.00	300.30	0.30	10783	0.27	0.10	0.03
23RAN002	300.30	300.60	0.30	10784	0.19	0.04	0.02
23RAN002	300.60	301.30	0.70	10785	0.02	0.00	0.01
23RAN002	301.30	301.63	0.33	10786	0.05	0.00	0.01
23RAN002	301.63	301.94	0.31	10787	0.03	0.00	0.01
23RAN002	301.94	302.25	0.31	10788	0.19	0.07	0.02
23RAN002	302.25	302.53	0.28	10789	0.65	0.24	0.05
23RAN002	302.53	303.00	0.47	10790	0.08	0.02	0.01
23RAN002	303.00	303.50	0.50	10791	0.20	0.07	0.02
23RAN002	303.50	303.90	0.40	10792	0.05	0.01	0.01

Hole ID	From	То	Interval	Sample ID	Ni	Cu	Со
	(m)	(m)	(m)		(%)	(%)	(%)
23RAN002	303.90	304.90	1.00	10794	0.03	0.01	0.01