

#### **ASX Announcement**

18 December 2024

# KINGSROSE CONTINUES TO INTERCEPT NEW ZONES OF NICKEL-COPPER MINERALISATION AT THE RÅNA PROJECT, NORWAY

Kingsrose Mining Limited (ASX: KRM) (**Kingsrose** or **Company**) is pleased to announce that all analytical results have been received from the 2024 core drilling programme at Råna, where a total of 706 metres was drilled across three holes at the Rånbogen prospect. (Figures 1 to 4, Tables 1 and 2).

### **HIGHLIGHTS**

- Drilling tested a previously undrilled zone of outcropping massive sulphide located 600 metres northwest of the massive sulphide zone intercepted at Rånbogen in 2023 which returned 26.2 metres at 0.7% Ni, 0.2% Cu and 0.06% Co from 169.0 metres (see ASX announcement dated 23 October 2023).
- Two holes intercepted broad intervals of disseminated to net-textured sulphide mineralisation demonstrating the presence of high nickel tenors, returning a maximum grade of 1.6% Ni, 0.2% Cu, 0.15% Co (interval length 0.64m, hole 24RAN010, Figure 1):
  - Hole 24RAN009 intercepted 13.8 metres at 0.4% Ni, 0.1% Cu, 0.04% Co from 143 metres (Figure 3).
  - o Hole 24RAN010 intercepted two zones of mineralisation:
    - 15.7 metres at 0.3% Ni, 0.1% Cu, 0.02% Co from 143 metres; and
    - 15.8 metres at 0.5% Ni, 0.1% Cu, 0.06% Co from 165.2 metres (Figure 4).
- Exploration has demonstrated nickel-copper-cobalt sulphide mineralising processes have occurred in multiple 'stacked' zones throughout the 10-kilometre diameter Råna intrusion, indicating a large search-space for future discovery (Figure 5).
- Due to current nickel market conditions, limited exploration work is currently planned for 2025 to reduce expenditure and allow the Company to consider how best to advance the Råna project.

Andrew Tunningley, Head of Exploration, commented "The 2024 drilling program has again discovered a new zone of broad near surface mineralisation associated with a large scale conductive geophysical anomaly. Coupled with the reconnaissance program results announced 16 September 2024, it remains clear that Råna is prospective for polymetallic base metal sulphide mineralization within a large scale intrusive system, and we consider this project to remain underexplored."

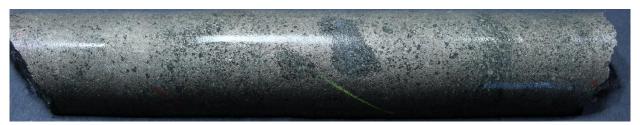



Figure 1: Massive pyrrhotite-pentlandite-chalcopyrite with rounded clasts of entrained norite, from a 0.64 m sample that returned 1.6% Ni, 0.2% Cu, 0.15% Co, 179.50 m, 24RAN010. NQ diameter drill core





Table 1: Drill collar details for reported drill holes, Råna Project, Norway

| Hole ID  | Easting | Northing | Elevation<br>(m) | Inclination (°) | Azimuth<br>(°) | Length<br>(m) |
|----------|---------|----------|------------------|-----------------|----------------|---------------|
| 24RAN008 | 583710  | 7583520  | 175              | -70             | 360            | 261.0         |
| 24RAN009 | 583710  | 7583520  | 175              | -50             | 360            | 233.0         |
| 24RAN010 | 583710  | 7583520  | 175              | -50             | 010            | 212.0         |

Table 2: Significant Intercepts for reported holes, Råna Project, Norway

| Hole ID   | From<br>(m)    | Interval<br>(m) | Ni<br>(%)           | Cu<br>(%)  | Co<br>(%)    |
|-----------|----------------|-----------------|---------------------|------------|--------------|
| 24RAN008  |                | No              | significant interce | ots        |              |
| 24RAN009  | 143.0          | 13.8            | 0.4                 | 0.1        | 0.04         |
| 24RAN010  | 143.0          | 15.7            | 0.3                 | 0.1        | 0.02         |
| including | 165.2<br>170.6 | 15.8<br>3.5     | 0.5<br>0.7          | 0.1<br>0.2 | 0.06<br>0.08 |

#### Notes

- 1. Significant intercepts were calculated using a 0.25% Ni lower cut-off and a maximum of 4 metres internal dilution.
- 2. Downhole interval is reported. Due to the early stage of exploration, lack of underground access due to flooding and lack of detailed structural data, it is not possible to estimate true widths.



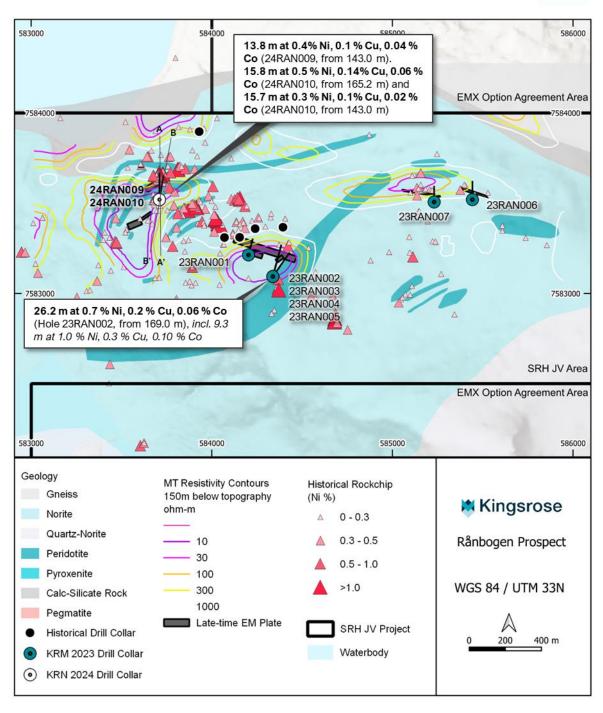



Figure 2: Map showing reported drill holes, geology, MT conductive anomalies, modelled EM plates and rock chips at the Rånbogen Prospect, Råna Project. Holes released in this announcement are labelled in bold.



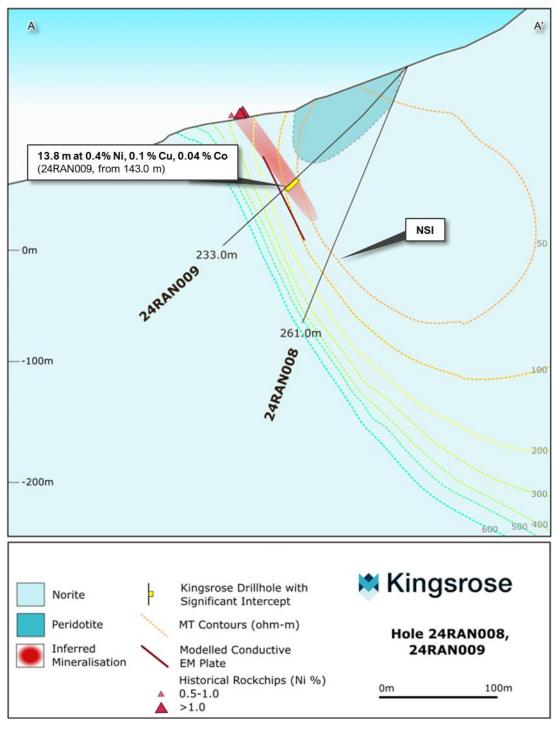



Figure 3: Cross section of holes 24RAN008 and -009, Rånbogen Prospect



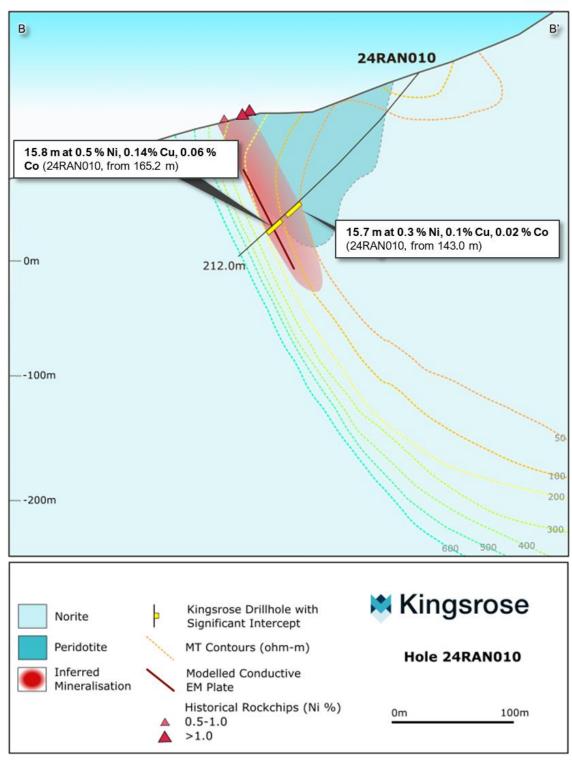
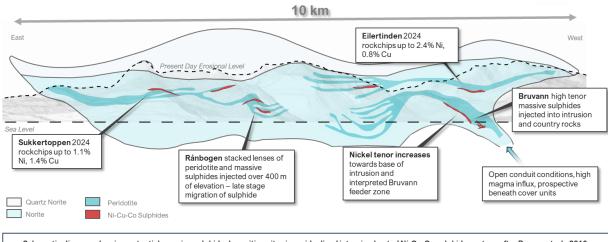
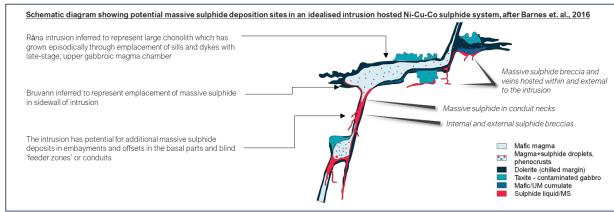





Figure 4: Cross section of holes 24RAN010, Rånbogen Prospect







**Figure 5.** Upper: Long section of the Råna intrusion with prospect location. Lower: Schematic diagram showing idealised intrusion hosted Ni-Cu-Co sulphide system and features observed at Råna. Figure after Barnes et. al., 2016. The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits. Ore Geology Reviews, 76, 296-316.

## - ENDS -

This announcement has been authorised for release to the ASX by the Managing Director.

For further information regarding the Company and its projects please visit <a href="https://www.kingsrose.com">www.kingsrose.com</a> **For more information please contact:** 

Fabian Baker Scott North

Managing Director +61 8 9389 4494 +61 477007414

info@kingsrose.com Scott.North@Kingsrose.com





### **ABOUT KINGSROSE MINING LIMITED**

Kingsrose Mining Limited is a leading sustainability-conscious and technically proficient mineral exploration company listed on the ASX. The Company has a discovery-focused strategy, targeting the acquisition and exploration of critical mineral deposits, that has resulted in the acquisition of, or joint venture into, the Råna nickel-copper-cobalt and Penikat PGE projects in Finland and Norway. Additionally, Kingsrose was selected for the first cohort of the BHP Xplor exploration accelerator program which commenced in January 2023 and was extended into two exploration Alliances.

#### **FORWARD-LOOKING STATEMENTS**

This announcement includes forward-looking statements, including forward-looking statements relating to the future operation of the Company. These forward-looking statements are based on the Company's expectations and beliefs concerning future events. Forward-looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of the Company, which could cause actual results to differ materially from such statements. The Company makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement to reflect the circumstances or events after the date of this announcement.

You are strongly cautioned not to place undue reliance on forward-looking statements.

#### **COMPETENT PERSONS STATEMENT**

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Andrew Tunningley, who is a Member and Chartered Professional (Geology) of the Australasian Institute of Mining and Metallurgy and is Head of Exploration for Kingsrose Mining Limited. Mr Tunningley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves." Mr Tunningley consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.





# Appendix 1 – JORC Code Table 1 for the Råna Project

# Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques    | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralization that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Historical Drilling</li> <li>Historical drilling results from Outokumpu Oy and Scandinavian Highlands AS relate to split drill core. This work was not completed under the supervision of the CP and measures taken to ensure sample representivity and appropriate calibration of equipment are not known.</li> <li>Historical drill core sampling is observed to have been completed at semi-regular downhole intervals with breaks at major changes in lithology and mineralisation styles. Sample intervals from Outokumpu drilling range from 0.02 to 55.2 meters, with an average sample interval of 1.75 metres. Sample intervals from Scandinavian Highlands AS drilling range from 0.13 to 4.00 meters, with an average sample interval of 1.73 metres.</li> <li>One half of the split core was sampled and one half was retained in the core box. The samples were submitted for crushing and pulverising prior to analysis. Outokumpu assayed rocks at Outokumpu's Geoanalytical laboratory in Finland as well as the onsite Nikkel Og Olivin laboratory. Samples were analysed for total nickel using unspecified acid digestion methods (Ekberg, 1997, NGU report No. 5508).</li> <li>Kingsrose Drilling</li> <li>Diamond drilling sample intervals are designed to honor geological boundaries.</li> <li>Core is aligned and measured by tape, referenced to downhole core blocks.</li> <li>Core sampling uses sample intervals of 0.5m to 2m and domained by geological constraints (e.g. Rock types, veining and alteration, presence of mineralisation and mineralisation style)</li> <li>Electromagnetic Data</li> <li>Downhole EM surveys were completed by Geovisor Oy and the data was modelled by Newexco Consultants Ptv Ltd.</li> </ul> |
| Drilling<br>techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Historical Drilling     Historical drilling by Outokumpu Oy was between 32 and 36 mm diameter core drilling. Drill core was not orientated.     Historical drilling by Scandinavian Highlands AS was 35.6mm diameter core drilling. Drill core was not orientated.  Kingsrose Drilling     NQ diameter core drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                            | Core is oriented using DeviCore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Drill sample recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul> | <ul> <li>Historical Drilling</li> <li>Outokumpu drill recoveries are not known. Kingsrose observed select archived historical drill core and the drill core was intact with no material zones of core loss observed.</li> <li>Scandinavian Highlands AS drill recoveries were recorded in drill logs and demonstrate high (&gt;95%) core recoveries. Method of recording sample recovery is not known.</li> <li>Observations on historic drill core during Kingsrose's due diligence work indicates that the drill core is very competent, and recoveries were generally above 95%. However not all mineralised intervals have been observed by Kingsrose and further re-logging of historic drill core is required.</li> <li>The relationship between historical sample recovery and grade has not been reported.</li> <li>Kingsrose Drilling</li> <li>Drill core recoveries are good and typically exceed 95%, measured through core recovery data including run length and recovered core length.</li> <li>To ensure maximum sample recovery the drill contract states a minimum core recovery of 90% and if the recovery drops below 90% the drillers and client determine whether or not to continue the hole.</li> <li>Sample representativity is ensured through drilling of appropriate diameter drill core for the style of mineralisation and employing a minimum sample length of 0.3 metres.</li> <li>No relationship between sample recovery and grade has</li> </ul> |
| Logging               | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.  Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.  The total length and percentage of the relevant intersections logged.           | <ul> <li>been observed.</li> <li>Core recoveries are very high and no sample bias exists.</li> <li>Historical Drilling</li> <li>Drill core samples were previously logged to a basic level of geological detail.</li> <li>Future drilling will be required to obtain the level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Historical logging was qualitative.</li> <li>There is no photographic record of historic core.</li> <li>All historic drill core (100%) was logged by Outokumpu Oy and Scandinavian Highlands AS.</li> <li>Kingsrose Drilling</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





| Critoria                                                | IOPC Code evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commontany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  | Drill core is geologically and geotechnically logged to a high level detail sufficient for the support of Mineral Resource estimation, mining studies and metallurgical studies.     Geological and geotechnical logging records both qualitative and quantitative information, for example rock type, mineral abundances (%), fracture intensity (fractures per metre), fracture type, roughness, fill etc.  All drill core is photographed in the core box, wet and dry, prior to cutting All drill core is logged (100%)  Historical Sampling  Historical operators used a mechanical splitter to split the historic drill core. Splitting the core does not result in exact halves being produced and may introduce some                                                                                                                                                                                                                                                                                                            |
| preparation                                             | <ul> <li>rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, incl. for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>exact halves being produced and may introduce some uncertainty as to the representivity of the historic sampling.</li> <li>Quality control procedures employed by historical operators are not available.</li> <li>No results of duplicate or second-half sampling are reported by historical operators and it is not known if this was completed.</li> <li>Historical sample sizes are considered appropriate to the grain size of the material being sampled.</li> <li>Kingsrose Drilling</li> <li>Core is cut into equal halves using a diamond saw.</li> <li>One half of the drill core is used for sampling and the other half is retained in the core box.</li> <li>Kingsrose drill core samples were prepared using ALS code PREP-31Y, crushing entire sample to &gt;70% passing 2mm and rotary split off 250g using a rotary splitter. Split was pulverised to &gt;85% passing 75 micron.</li> <li>Blanks, duplicates and certified reference materials were inserted into the sample stream at a rate of 1</li> </ul> |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>were inserted into the sample stream at a rate of 1 blank and standard for every 20 samples</li> <li>Duplicate samples are used to ensure sampling is representative of the in-stu material collected and the data confirm that sampling is representative.</li> <li>Sample sizes are appropriate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Quality of assay                                        | The nature, quality and appropriateness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Historical Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| data and laboratory tests                               | of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The details of historic assaying and laboratory procedures are not known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                         | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis incl. instrument make and model, reading times, calibrations factors applied and their derivation, etc.                                                                                                                                                                                                                                                                                                                                                  | Quality control procedures employed by Outokumpu Oy<br>are not known and it is not possible to determine the<br>levels of accuracy and precision for historic assays<br>reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





| Criteria                              | JORC Code explanation                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.                                                                                     | <ul> <li>Verification sampling by Kingsrose is required to ascertain the reliability of historic assays.</li> <li>Kingsrose Drilling</li> <li>Kingsrose samples were analysed by lead fire assay with ICP-AES finish for Au, Pt and Pd (ALS code PGM-ICP24) as well as 48 element four acid total digestion (ME-MS61). ME-MS61 and PGM-ICP24 are considered as total techniques.</li> <li>ALS routinely insert certified reference and blank material as part of their internal quality control procedures and to ensure acceptable levels of accuracy and precision are achieved. These results have been reviewed by Kingsrose.</li> <li>The results of Kingsrose blanks, certified reference materials and comparison with historical results indicate that acceptable levels of accuracy and precision have been established.</li> </ul> |
|                                       |                                                                                                                                                                                                                                                                                                  | The downhole electromagnetic surveys were carried out using a Zonge ZT30 transmitter and EMIT digiAtlantis probe. The data were recorded at 1 Hz consistent with target conductances between 100 and 10,000 S for disseminated to massive style targets. Transmit currents approach 30 A.      Data were recorded at 24 kHz, with 64 stacks per reading; 3 consistent readings per station were requested from the crew. This ensured an optimal signal to noise ratio in this environment. Models were generated after data sanitation in EMIT programme Maxwell.                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                  | The fixed loop electromagnetic surveys were carried out using two receiver units for higher productivity.     Equipment comprised a Zonge ZT30 transmitter (estimated current in the transmitter loop of 25-30A), two EMIT SMARTem24 receivers plus SMART Fluxgate, and a Hoda EU-65is 5500 W generator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |                                                                                                                                                                                                                                                                                                  | The measurements were done using two separate acquisition systems. The first part of the processing was done using SMARTem24 software. The first step was to merge the datasets from the two separate systems into a single project. Then the data was reprocessed from the raw data to ensure the data integrity using the original time windowing scheme. After this, the bad readings were deleted (outliers), and the data quality (raw data) and acquisition parameters were checked.                                                                                                                                                                                                                                                                                                                                                   |
| Verification of sampling and assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> </ul> | Kingsrose has reassayed select historical drill intercepts and results show that significant intercepts are comparable between the two data sets with no significant error or bias. Historical drill core has been observed and confirms the presence of disseminated to massive sulphide mineralisation composed of pentlandite, chalcopyrite and pyrrhotite. The observed sulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                                | Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                                                      | <ul> <li>mineralised intervals correspond with mineralised intervals reported in historical assay sheets.</li> <li>There are no twin holes.</li> <li>Historical data was recorded on hard copy logs. Historical entry, verification, storage and protocols are not known.</li> <li>There has been no adjustment to assay data.</li> <li>Kingsrose uses MX Deposit and Imago software for data entry, verification, quality control, logging data and core photography. The data is stored on the cloud and is also exported and saved on Kingsrose's internal data drives as a backup and for use in geological modelling software.</li> <li>There has been no verification of Kingsrose significant intercepts by independent personnel. Kingsrose employs project geologists and an exploration manager at the Råna project, and the significant intercepts were verified</li> </ul> |
| Location of data points                                 | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.     Specification of the grid system used.     Quality and adequacy of topographic control.                                                                                                    | <ul> <li>by the company's Head of Exploration.</li> <li>Methodology and quality of surveys used to locate historical drill holes, trenches and mine workings are not known. However, several historical drill holes have been located in the field using handheld GPS at the correct locations indicated in historical reports.</li> <li>Kingsrose drill holes were located using handheld GPS.</li> <li>The grid system used is ETRS89, Zone 33.</li> <li>Topographic control is by publicly available LIDAR mapping data and is considered adequate for reporting of Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                 |
| Data spacing and distribution                           | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>         | <ul> <li>Historical exploration drill holes were located 20 to 150 m apart.</li> <li>Kingsrose exploration holes are variably spaced dependent on the exploration target characteristics.</li> <li>No Mineral Resource or Ore Reserve estimations are being reported.</li> <li>No sample compositing has been applied.</li> <li>Fixed loop electromagnetic surveys comprised loops of 200x200 m and 300x300 m at 25 m to 50 m station spacing. Downhole EM was conducted at 10 m station spacing.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           |
| Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.      If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | <ul> <li>Historical drilling was angled perpendicular to the mapped mineralisation at surface to achieve unbiased sampling. Given the early stage of exploration Rånbogen the true width of mineralisation cannot be estimated.</li> <li>Localised deviations in the dip and strike of mineralisation may cause overestimation of true thicknesses given the early stage of exploration, and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





| Criteria          | JORC Code explanation                                                 | Commentary                                                                                                                                                                                                                                                                                           |
|-------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                       | future drilling is required to better understand the morphology of the mineralisation.                                                                                                                                                                                                               |
|                   |                                                                       | Geophysical surveys were oriented normal to lithological contacts and mineralisation, where possible.                                                                                                                                                                                                |
|                   |                                                                       | Kingsrose drilling was oriented perpendicular to the inferred dip and strike of mineralisation. However as these are early exploration drill holes into open areas of the deposit it is not possible to estimate the true thickness of mineralisation at this time.                                  |
| Sample security   | The measures taken to ensure sample security.                         | Historical procedures to ensure sample security are not known.                                                                                                                                                                                                                                       |
|                   |                                                                       | Kingsrose sampling was performed by Kingsrose employees in a secure logging facility, and samples were shipped by courier in sealed containers to the sample preparation laboratory. Samples are checked on arrival for signs of tampering before being accepted into the custody of the laboratory. |
| Audits or reviews | The results of any audits or reviews of sampling techniques and data. | There have been no audits of sampling techniques and data.                                                                                                                                                                                                                                           |



# Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections)

| tenement and land tenure status  ownership incl. agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historic sites, wilderness or national park and environmental settings.  The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.  The exp AS. Nar Norge A group), Holding Energy  Four rowns he by GEM purchas \$100 kg.  To conditional park and environmental settings.  The protocolling Norway March 2 up to 3  The exp AS. Nar Norge A group), Holding Energy  To conditional park and environmental settings.  The protocolling Norway March 2 up to 3  The exp AS. Nar Norge A group), Holding Energy  To conditional park and environmental settings. | project comprises five contiguous licences ing 28km², located in Nordland County, northern ay. The exploration licences were granted in a 2019 and expire March 2026, with potential for 3 year extension on application (March 2029) exploration licences are registered to Narvik Nikkel larvik Nikkel AS is 51% owned by Kingsrose a AS (a 100% owned subsidiary of the Kingsrose by), 39% owned by Scandinavian Resource ings Pty Ltd ("SRH") and 10% owned by Global by Metals Corporation ("GEMC"). |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Act: No notifical and inviperiod (may be Director and the parties. county                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The incorporation of the JV Company with an issued capital of in JV 90,000 JV Company issued and                                                                                                                                                                                                                                                                                                                                                                                                          |



| Criteria  | JORC Code explanation | Commentary                               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                               |
|-----------|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Criteria | OCIC Code explanation | Commentary                               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                               |
|           |                       |                                          | (First Milestone).                                                                                                                                                                                                                                                                                                                                                                                  | A\$30,000 to be paid by the Company to SRH.                                                                                                                                                   |
|           |                       | Second (For 51% of shares in JV Company) | Kingsrose (or a related body corporate) (Manager), incurring expenditure of at least A\$3 million (minus the Licence Fees Amount) within 3 years from the date of First Completion including not less than:  • A\$1 million to include 2,000 metres of drilling by 31 December 2023; and • 3,000 metres of drilling and preliminary metallurgist test work by 31 December 2024, (Second Milestone). | 94,617 JV Company shares will be issued and allotted to the Company.  10,513 JV Company shares will be issued and allotted to GEMC.  1,000,000 KRM Shares will be issued and allotted to SRH. |
|           |                       | Third  (For 65% of shares in JV Company) | Expenditure by the Manager of at least an additional \$4 million within 2 years following Second Completion (Third Milestone)                                                                                                                                                                                                                                                                       | 103,391 JV Company shares will be issued and allotted to the Company.  3,500,000 KRM Shares will be issued and allotted to SRH.  \$250,000 to be paid by the Company to SRH.                  |
|           |                       | Fourth                                   | Expenditure by the Manager of at least an additional \$8 million within 3 years following Third                                                                                                                                                                                                                                                                                                     | 10,000 JV<br>Company<br>shares will be<br>issued and                                                                                                                                          |



| Criteria              | JORC Code explanation                                         | Commentary                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       |                                                               | (For 75% of shares in JV Company)  Company)  Company  A cash payment of \$750,000 to be paid by the Company to SRH.                                                                                                                                                                                                               |  |
|                       |                                                               | EMX Option Agreement                                                                                                                                                                                                                                                                                                              |  |
|                       |                                                               | The project comprises 19 contiguous licences totalling 183km², located in Nordland County, northern Norway. The exploration licences were granted in May 2022 and expire May 2029, with potential for up to 3 year extension on application.                                                                                      |  |
|                       |                                                               | Via an arm's length transaction, Kingsrose has acquired a 100% interest in the Råna project by a) making A\$30,000 cash payment upon execution and b) making another cash payment of A\$100,000 and spending a minimum of A\$150,000 on exploration during a 12-month option period. Upon exercise of the option, Kingsrose will: |  |
|                       |                                                               | Provide EMX with a 2.5% NSR royalty interest in the<br>Project. On or before the eighth anniversary after<br>closing, Kingsrose has the option to purchase 0.5% of<br>the NSR on the Project by paying EMX A\$1,200,000.                                                                                                          |  |
|                       |                                                               | To maintain its interest in the Project, Kingsrose will spend additional exploration expenditures of A\$150,000 by the second anniversary, A\$350,000 by the third anniversary, and A\$350,000 by the fourth anniversary of the agreement, respectively, for a total of A\$1,000,000 in exploration expenditures.                 |  |
|                       |                                                               | EMX will receive annual advance royalty ("AAR")     payments of A\$25,000 commencing on the third     anniversary of the agreement, with the AAR payment     increasing 10% each year thereafter (but capped at an     annual payment of A\$75,000)                                                                               |  |
|                       |                                                               | A milestone cash payment of A\$250,000 will be made<br>to EMX upon completion of the first 10,000 meters of<br>drilling at the Project.                                                                                                                                                                                           |  |
|                       |                                                               | An additional milestone cash payment of A\$500,000,<br>will be made to EMX upon disclosure of a maiden<br>resource.                                                                                                                                                                                                               |  |
| Exploration           | Acknowledgment and appraisal of exploration by other parties. | 1880-2002: Historical exploration and mining                                                                                                                                                                                                                                                                                      |  |
| done by other parties | exploration by other parties.                                 | The following is summarised from Jebens, 2013:                                                                                                                                                                                                                                                                                    |  |
|                       |                                                               | Small scale artisanal mining at Råna dates back to<br>1880.                                                                                                                                                                                                                                                                       |  |





| Criteria | JORC Code explanation                                         | Commentary                                                                                                                                                                                                                                                                                                                                     |
|----------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                               | Between 1915 and 1937, 1299 meters of drilling was<br>completed by Bjørkåsen Gruber and Raffineringsverket<br>Kristiansand.                                                                                                                                                                                                                    |
|          |                                                               | A 700 metre drift and 4035 metres drilling was<br>completed during the Second World War (operator<br>unknown)                                                                                                                                                                                                                                  |
|          |                                                               | Between 1970-1975 Stavanger Steel and the<br>Norwegian Geological Survey (NGU) completed<br>24,743 metres of drilling and 'geophysical surveys'                                                                                                                                                                                                |
|          |                                                               | In 1989 Nikkel og Olivin AS, a private Norwegian<br>company, commenced mining                                                                                                                                                                                                                                                                  |
|          |                                                               | In 1993 Outokumpu bought Nikkel og Olivin AS and<br>operated the mine until it closed in 2002.                                                                                                                                                                                                                                                 |
|          |                                                               | The mine is reported to have produced 8.5 Mt at 0.52% Ni in total.                                                                                                                                                                                                                                                                             |
|          |                                                               | 2002-2007: Exploration                                                                                                                                                                                                                                                                                                                         |
|          |                                                               | In 2004 the project was explored by Scandinavian<br>Highlands AS, a private company. Work included a 185<br>line km SkyTEM geophysical survey, 2km² ground<br>magnetic survey, 4000 soil samples and 400 rock chip<br>samples                                                                                                                  |
|          |                                                               | In 2006 Scandinavian Highlands AS completed 17 diamond drill holes for 3982.90 metres at the Rånbogen and Arnes prospects.                                                                                                                                                                                                                     |
|          |                                                               | 2019-2022                                                                                                                                                                                                                                                                                                                                      |
|          |                                                               | In 2019 Scandinavian Resource Holdings acquired the exploration rights to 25km² of the Råna intrusion including the Bruvann mine, Rånbogen and Arnes prospects.                                                                                                                                                                                |
|          |                                                               |                                                                                                                                                                                                                                                                                                                                                |
| Geology  | Deposit type, geological setting and style of mineralisation. | The Råna intrusion (436.9 +1 -2 Ma) is a large (~11km east to west x 9km north to south, in total, approximately 70 km²) mafic-ultramafic intrusion 3,800m thick emplaced into argillaceous metasediments during the Scandian orogeny.                                                                                                         |
|          |                                                               | The Råna intrusion morphology shows internal characteristics that are consistent with a conduit-style of emplacement such as possible compartmentalisation into separate "sub-sills" defined by zones or screens of xenoliths.                                                                                                                 |
|          |                                                               | The upper parts of the intrusion appear to be more massive in their character, thicker and possibly more laterally extensive than the lower, more ultramafic section. The intrusion has several indicators of emplacement as a relatively aqueous magma, including ubiquitous phlogopite, melt patches, and anastomosing veins and pegmatites. |
|          |                                                               | Sulphide mineralisation is located at several localities forming isolated bodies within the lower part of the intrusion. Mineralisation occurs as disseminated, net textured semi-massive and massive styles, composed of pyrrhotite, chalcopyrite and pentlandite. Rare                                                                       |





| Criteria                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole Information         | A summary of all information material to the understanding of the exploration results incl. a tabulation of the following information for all Material drill holes:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pentlandite loops are observed in the massive mineralisation.  Mineralisation at the Bruvann mine occurs over a zone of at least 600 by 500 by 500 metres at the contact between peridotite-pyroxenite and the gneiss footwall, locally compartmentalised into the intrusion as large xenoliths.  Rånbogen is defined by a 1.4km long zone of anomalous nickel-copper in soils which coincides with several mapped zones of ultramafic sills and outcropping zones of massive and disseminated sulphide mineralisation. Historical rock chip sampling from this prospect includes 30 samples exceeding 1% Ni and up to 2.3% Ni, coincident with shallow conductors identified from the 2006 SkyTEM survey. In 2006, the southeastern part of the Rånbogen prospect was drilled by SRH with 10 holes totalling 2431.4 metres. All holes intercepted disseminated sulphide mineralisation with narrow zones of massive sulphide which remain open. At both prospects, mineralisation occurs from surface and is largely unweathered with only localised zones of minor oxidation.  The intrusion is largely non-deformed and unaltered, with only localised patchy actinolite-tremolite alteration in pyroxenite units. |
| Data<br>aggregation<br>methods | <ul> <li>why this is the case.</li> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high-grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly</li> </ul> | <ul> <li>Significant intercepts from historic drill holes are reported as weighted averages.</li> <li>Significant intercepts are reported using a lower cut off of 0.25 % nickel.</li> <li>No metal equivalent values are reported.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | All intercepts are reported as downhole lengths.      The geometry of mineralised zones are not well understood due to the early stage of exploration and only down hole length is reported. True width is not known.                                                                                                                                                                                                                                                                                                                                               |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                                | Maps and tabulations of results are provided in the body of the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Balanced reporting                                                              | Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and<br>high-grades and/or widths should be<br>practiced to avoid misleading reporting of<br>Exploration Results.                                                                                                                                                                          | See Table 2 and Appendix 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and material, should be reported incl. (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.                                 | Production from Bruvann Mine is reported to have totalled 8.5 Mt @ 0.5 % Ni, 0.1 % Cu and 0.03 % Co from approximately 25km of underground workings, with life of mine recoveries reported as 74% Ni, 85 % Cu and 62 % Co.                                                                                                                                                                                                                                                                                                                                          |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, incl. the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                   | Kingsrose intends to test for lateral and depth extensions of drilled mineralisation through additional drilling and electromagnetic surveys. Newly identified zones of mineralisation from the 2024 reconnaissance program will be followed up with detailed mapping, and a systematic geophysical program to include but not limited to magnetic and electromagnetic surveys for generation of potential drill targets. This work will be subject to accessibility due to seasonality at the project, and analysis of the nickel price environment and forecasts. |



# Appendix 2 – Assay Data

| Hole ID  | From (m) | To (m) | Interval<br>(m) | Sample<br>Number | Ni % | Cu % | Co % |
|----------|----------|--------|-----------------|------------------|------|------|------|
| 24RAN008 | 3.00     | 4.00   | 1.00            | 11126            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 4.00     | 5.05   | 1.05            | 11127            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 5.05     | 7.05   | 2.00            | 11128            | 0.04 | 0.01 | 0.01 |
| 24RAN008 | 7.05     | 8.05   | 1.00            | 11129            | 0.05 | 0.01 | 0.01 |
| 24RAN008 | 8.05     | 9.05   | 1.00            | 11131            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 85.00    | 86.00  | 1.00            | 11132            | 0.01 | 0.01 | 0.01 |
| 24RAN008 | 86.00    | 87.00  | 1.00            | 11133            | 0.01 | 0.01 | 0.01 |
| 24RAN008 | 87.00    | 88.00  | 1.00            | 11134            | 0.06 | 0.03 | 0.01 |
| 24RAN008 | 88.00    | 89.00  | 1.00            | 11135            | 0.10 | 0.05 | 0.02 |
| 24RAN008 | 89.00    | 90.00  | 1.00            | 11136            | 0.06 | 0.03 | 0.01 |
| 24RAN008 | 90.00    | 91.00  | 1.00            | 11137            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 91.00    | 92.00  | 1.00            | 11138            | 0.04 | 0.01 | 0.01 |
| 24RAN008 | 92.00    | 94.00  | 2.00            | 11139            | 0.05 | 0.03 | 0.01 |
| 24RAN008 | 94.00    | 95.00  | 1.00            | 11141            | 0.03 | 0.02 | 0.01 |
| 24RAN008 | 95.00    | 96.00  | 1.00            | 11142            | 0.07 | 0.03 | 0.01 |
| 24RAN008 | 96.00    | 98.00  | 2.00            | 11143            | 0.06 | 0.03 | 0.01 |
| 24RAN008 | 98.00    | 100.00 | 2.00            | 11144            | 0.06 | 0.03 | 0.01 |
| 24RAN008 | 100.00   | 102.00 | 2.00            | 11145            | 0.08 | 0.04 | 0.02 |
| 24RAN008 | 102.00   | 104.00 | 2.00            | 11146            | 0.06 | 0.03 | 0.01 |
| 24RAN008 | 104.00   | 106.00 | 2.00            | 11147            | 0.13 | 0.06 | 0.03 |
| 24RAN008 | 106.00   | 108.00 | 2.00            | 11148            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 108.00   | 110.00 | 2.00            | 11151            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 110.00   | 112.00 | 2.00            | 11152            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 112.00   | 114.00 | 2.00            | 11153            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 114.00   | 116.00 | 2.00            | 11154            | 0.02 | 0.00 | 0.01 |
| 24RAN008 | 116.00   | 116.90 | 0.90            | 11155            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 116.90   | 118.00 | 1.10            | 11156            | 0.05 | 0.00 | 0.01 |
| 24RAN008 | 118.00   | 120.00 | 2.00            | 11157            | 0.03 | 0.00 | 0.01 |
| 24RAN008 | 165.50   | 167.50 | 2.00            | 11158            | 0.02 | 0.00 | 0.01 |
| 24RAN008 | 167.50   | 169.50 | 2.00            | 11159            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 169.50   | 171.50 | 2.00            | 11161            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 171.50   | 173.50 | 2.00            | 11162            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 173.50   | 174.50 | 1.00            | 11163            | 0.05 | 0.02 | 0.01 |
| 24RAN008 | 174.50   | 175.50 | 1.00            | 11164            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 175.50   | 176.50 | 1.00            | 11165            | 0.04 | 0.01 | 0.01 |
| 24RAN008 | 176.50   | 177.50 | 1.00            | 11166            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 177.50   | 178.50 | 1.00            | 11167            | 0.07 | 0.03 | 0.01 |
| 24RAN008 | 178.50   | 179.50 | 1.00            | 11168            | 0.10 | 0.02 | 0.02 |



| Hole ID  | From (m) | To (m) | Interval    | Sample<br>Number | Ni % | Cu % | Co % |
|----------|----------|--------|-------------|------------------|------|------|------|
| 24RAN008 | 179.50   | 180.50 | (m)<br>1.00 | 11171            | 0.07 | 0.03 | 0.01 |
| 24RAN008 | 180.50   | 181.50 | 1.00        | 11172            | 0.16 | 0.06 | 0.02 |
| 24RAN008 | 181.50   | 182.40 | 0.90        | 11173            | 0.06 | 0.03 | 0.01 |
| 24RAN008 | 182.40   | 183.40 | 1.00        | 11174            | 0.05 | 0.02 | 0.01 |
| 24RAN008 | 183.40   | 184.40 | 1.00        | 11175            | 0.00 | 0.00 | 0.00 |
| 24RAN008 | 184.40   | 185.40 | 1.00        | 11176            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 185.40   | 186.40 | 1.00        | 11177            | 0.09 | 0.06 | 0.02 |
| 24RAN008 | 186.40   | 187.11 | 0.71        | 11178            | 0.04 | 0.01 | 0.01 |
| 24RAN008 | 187.11   | 188.11 | 1.00        | 11179            | 0.05 | 0.01 | 0.01 |
| 24RAN008 | 188.11   | 189.11 | 1.00        | 11181            | 0.05 | 0.01 | 0.01 |
| 24RAN008 | 189.11   | 190.50 | 1.39        | 11182            | 0.05 | 0.01 | 0.01 |
| 24RAN008 | 190.50   | 192.50 | 2.00        | 11183            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 192.50   | 194.50 | 2.00        | 11184            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 194.50   | 196.50 | 2.00        | 11185            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 196.50   | 198.50 | 2.00        | 11186            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 198.50   | 200.50 | 2.00        | 11187            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 200.50   | 202.50 | 2.00        | 11188            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 202.50   | 204.50 | 2.00        | 11189            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 204.50   | 206.50 | 2.00        | 11191            | 0.02 | 0.00 | 0.01 |
| 24RAN008 | 206.50   | 209.00 | 2.50        | 11193            | 0.01 | 0.00 | 0.01 |
| 24RAN008 | 209.00   | 209.40 | 0.40        | 11194            | 0.05 | 0.01 | 0.01 |
| 24RAN008 | 209.40   | 210.40 | 1.00        | 11195            | 0.02 | 0.01 | 0.00 |
| 24RAN008 | 210.40   | 211.22 | 0.82        | 11196            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 211.22   | 212.22 | 1.00        | 11197            | 0.02 | 0.01 | 0.00 |
| 24RAN008 | 212.22   | 213.20 | 0.98        | 11198            | 0.02 | 0.00 | 0.00 |
| 24RAN008 | 213.20   | 214.20 | 1.00        | 11199            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 214.20   | 215.20 | 1.00        | 11201            | 0.02 | 0.01 | 0.01 |
| 24RAN008 | 215.20   | 216.20 | 1.00        | 11202            | 0.02 | 0.01 | 0.00 |
| 24RAN008 | 216.20   | 218.20 | 2.00        | 11203            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 218.20   | 220.20 | 2.00        | 11204            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 220.20   | 221.67 | 1.47        | 11205            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 221.67   | 223.50 | 1.83        | 11206            | 0.01 | 0.00 | 0.00 |
| 24RAN008 | 223.50   | 225.50 | 2.00        | 11207            | 0.01 | 0.00 | 0.01 |
| 24RAN008 | 253.80   | 255.80 | 2.00        | 11208            | 0.06 | 0.00 | 0.01 |
| 24RAN008 | 255.80   | 256.80 | 1.00        | 11209            | 0.06 | 0.01 | 0.01 |
| 24RAN008 | 256.80   | 257.40 | 0.60        | 11211            | 0.03 | 0.01 | 0.01 |
| 24RAN008 | 257.40   | 258.40 | 1.00        | 11212            | 0.02 | 0.01 | 0.00 |
| 24RAN008 | 258.40   | 259.40 | 1.00        | 11213            | 0.02 | 0.01 | 0.00 |
| 24RAN008 | 259.40   | 260.40 | 1.00        | 11214            | 0.02 | 0.01 | 0.00 |
| 24RAN008 | 260.40   | 261.00 | 0.60        | 11215            | 0.01 | 0.01 | 0.00 |





| Hole ID  | From (m) | To (m) | Interval    | Sample          | Ni % | Cu % | Co % |
|----------|----------|--------|-------------|-----------------|------|------|------|
| 24RAN009 | 98.50    | 100.50 | (m)<br>2.00 | Number<br>11216 | 0.06 | 0.01 | 0.01 |
| 24RAN009 | 100.50   | 102.50 | 2.00        | 11217           | 0.07 | 0.01 | 0.01 |
| 24RAN009 | 102.50   | 104.50 | 2.00        | 11218           | 0.07 | 0.01 | 0.01 |
| 24RAN009 | 104.50   | 106.50 | 2.00        | 11219           | 0.08 | 0.01 | 0.02 |
| 24RAN009 | 106.50   | 108.50 | 2.00        | 11221           | 0.07 | 0.01 | 0.01 |
| 24RAN009 | 108.50   | 110.33 | 1.83        | 11222           | 0.06 | 0.01 | 0.01 |
| 24RAN009 | 110.33   | 112.00 | 1.67        | 11223           | 0.02 | 0.01 | 0.00 |
| 24RAN009 | 112.00   | 114.00 | 2.00        | 11224           | 0.02 | 0.01 | 0.01 |
| 24RAN009 | 114.00   | 116.00 | 2.00        | 11225           | 0.02 | 0.00 | 0.01 |
| 24RAN009 | 116.00   | 117.64 | 1.64        | 11226           | 0.02 | 0.01 | 0.01 |
| 24RAN009 | 117.64   | 118.80 | 1.16        | 11227           | 0.09 | 0.02 | 0.01 |
| 24RAN009 | 118.80   | 120.80 | 2.00        | 11228           | 0.36 | 0.11 | 0.03 |
| 24RAN009 | 120.80   | 122.80 | 2.00        | 11231           | 0.08 | 0.03 | 0.01 |
| 24RAN009 | 122.80   | 124.80 | 2.00        | 11232           | 0.06 | 0.02 | 0.01 |
| 24RAN009 | 124.80   | 126.80 | 2.00        | 11233           | 0.36 | 0.09 | 0.03 |
| 24RAN009 | 126.80   | 128.80 | 2.00        | 11234           | 0.11 | 0.03 | 0.01 |
| 24RAN009 | 128.80   | 130.80 | 2.00        | 11235           | 0.05 | 0.01 | 0.01 |
| 24RAN009 | 130.80   | 132.80 | 2.00        | 11236           | 0.01 | 0.00 | 0.00 |
| 24RAN009 | 132.80   | 133.50 | 0.70        | 11237           | 0.10 | 0.10 | 0.01 |
| 24RAN009 | 133.50   | 134.80 | 1.30        | 11238           | 0.10 | 0.01 | 0.01 |
| 24RAN009 | 134.80   | 135.80 | 1.00        | 11239           | 0.10 | 0.02 | 0.01 |
| 24RAN009 | 135.80   | 137.00 | 1.20        | 11241           | 0.22 | 0.03 | 0.03 |
| 24RAN009 | 137.00   | 138.00 | 1.00        | 11307           | 0.12 | 0.02 | 0.01 |
| 24RAN009 | 138.00   | 139.00 | 1.00        | 11242           | 0.16 | 0.03 | 0.02 |
| 24RAN009 | 139.00   | 140.00 | 1.00        | 11243           | 0.21 | 0.04 | 0.02 |
| 24RAN009 | 140.00   | 141.00 | 1.00        | 11244           | 0.20 | 0.04 | 0.02 |
| 24RAN009 | 141.00   | 142.40 | 1.40        | 11245           | 0.18 | 0.07 | 0.02 |
| 24RAN009 | 142.40   | 143.00 | 0.60        | 11246           | 0.18 | 0.03 | 0.02 |
| 24RAN009 | 143.00   | 144.00 | 1.00        | 11247           | 0.34 | 0.05 | 0.04 |
| 24RAN009 | 144.00   | 145.00 | 1.00        | 11248           | 0.59 | 0.11 | 0.07 |
| 24RAN009 | 145.00   | 145.60 | 0.60        | 11249           | 0.58 | 0.11 | 0.06 |
| 24RAN009 | 145.60   | 146.10 | 0.50        | 11251           | 0.50 | 0.14 | 0.06 |
| 24RAN009 | 146.10   | 146.60 | 0.50        | 11253           | 0.23 | 0.04 | 0.03 |
| 24RAN009 | 146.60   | 147.10 | 0.50        | 11254           | 0.46 | 0.28 | 0.05 |
| 24RAN009 | 147.10   | 147.60 | 0.50        | 11255           | 0.31 | 0.08 | 0.04 |
| 24RAN009 | 147.60   | 148.90 | 1.30        | 11256           | 0.29 | 0.09 | 0.03 |
| 24RAN009 | 148.90   | 149.30 | 0.40        | 11257           | 0.82 | 0.05 | 0.09 |
| 24RAN009 | 149.30   | 150.30 | 1.00        | 11258           | 0.30 | 0.07 | 0.03 |
| 24RAN009 | 150.30   | 151.30 | 1.00        | 11259           | 0.24 | 0.06 | 0.03 |
| 24RAN009 | 151.30   | 152.30 | 1.00        | 11261           | 0.35 | 0.09 | 0.04 |





| Hole ID  | From (m) | To (m) | Interval<br>(m) | Sample<br>Number | Ni % | Cu % | Co % |
|----------|----------|--------|-----------------|------------------|------|------|------|
| 24RAN009 | 152.30   | 152.86 | 0.56            | 11262            | 0.26 | 0.07 | 0.03 |
| 24RAN009 | 152.86   | 153.36 | 0.50            | 11263            | 0.37 | 0.15 | 0.04 |
| 24RAN009 | 153.36   | 153.66 | 0.30            | 11264            | 0.53 | 0.16 | 0.06 |
| 24RAN009 | 153.66   | 154.16 | 0.50            | 11265            | 0.28 | 0.08 | 0.03 |
| 24RAN009 | 154.16   | 154.71 | 0.55            | 11266            | 0.20 | 0.08 | 0.02 |
| 24RAN009 | 154.71   | 155.33 | 0.62            | 11267            | 0.45 | 0.10 | 0.05 |
| 24RAN009 | 155.33   | 156.10 | 0.77            | 11268            | 0.01 | 0.01 | 0.00 |
| 24RAN009 | 156.10   | 156.80 | 0.70            | 11269            | 0.26 | 0.05 | 0.03 |
| 24RAN009 | 156.80   | 157.80 | 1.00            | 11271            | 0.24 | 0.04 | 0.03 |
| 24RAN009 | 157.80   | 158.16 | 0.36            | 11272            | 0.05 | 0.00 | 0.01 |
| 24RAN009 | 158.16   | 158.80 | 0.64            | 11274            | 0.23 | 0.05 | 0.03 |
| 24RAN009 | 158.80   | 159.80 | 1.00            | 11275            | 0.12 | 0.03 | 0.01 |
| 24RAN009 | 159.80   | 161.80 | 2.00            | 11276            | 0.12 | 0.03 | 0.01 |
| 24RAN009 | 161.80   | 163.50 | 1.70            | 11277            | 0.07 | 0.02 | 0.01 |
| 24RAN009 | 163.50   | 165.50 | 2.00            | 11278            | 0.07 | 0.02 | 0.01 |
| 24RAN009 | 165.50   | 167.50 | 2.00            | 11279            | 0.05 | 0.02 | 0.01 |
| 24RAN009 | 167.50   | 169.50 | 2.00            | 11281            | 0.04 | 0.02 | 0.01 |
| 24RAN009 | 169.50   | 171.50 | 2.00            | 11282            | 0.13 | 0.04 | 0.01 |
| 24RAN009 | 171.50   | 173.50 | 2.00            | 11283            | 0.05 | 0.01 | 0.00 |
| 24RAN009 | 173.50   | 175.50 | 2.00            | 11284            | 0.03 | 0.01 | 0.00 |
| 24RAN009 | 175.50   | 177.50 | 2.00            | 11285            | 0.02 | 0.01 | 0.00 |
| 24RAN009 | 177.50   | 179.50 | 2.00            | 11286            | 0.05 | 0.02 | 0.01 |
| 24RAN009 | 179.50   | 181.50 | 2.00            | 11287            | 0.08 | 0.03 | 0.01 |
| 24RAN009 | 181.50   | 183.50 | 2.00            | 11288            | 0.02 | 0.01 | 0.00 |
| 24RAN009 | 183.50   | 185.50 | 2.00            | 11289            | 0.03 | 0.01 | 0.00 |
| 24RAN009 | 185.50   | 187.50 | 2.00            | 11291            | 0.06 | 0.02 | 0.01 |
| 24RAN009 | 187.50   | 189.50 | 2.00            | 11292            | 0.01 | 0.01 | 0.00 |
| 24RAN009 | 189.50   | 191.00 | 1.50            | 11294            | 0.02 | 0.01 | 0.00 |
| 24RAN009 | 191.00   | 192.00 | 1.00            | 11295            | 0.03 | 0.02 | 0.01 |
| 24RAN009 | 192.00   | 194.00 | 2.00            | 11296            | 0.06 | 0.04 | 0.01 |
| 24RAN009 | 194.00   | 196.00 | 2.00            | 11297            | 0.03 | 0.01 | 0.01 |
| 24RAN009 | 196.00   | 198.00 | 2.00            | 11298            | 0.08 | 0.02 | 0.01 |
| 24RAN009 | 198.00   | 200.00 | 2.00            | 11299            | 0.03 | 0.01 | 0.01 |
| 24RAN009 | 200.00   | 202.00 | 2.00            | 11301            | 0.01 | 0.01 | 0.00 |
| 24RAN009 | 202.00   | 204.00 | 2.00            | 11302            | 0.01 | 0.01 | 0.00 |
| 24RAN009 | 204.00   | 204.50 | 0.50            | 11303            | 0.02 | 0.02 | 0.01 |
| 24RAN009 | 204.50   | 205.54 | 1.04            | 11304            | 0.00 | 0.00 | 0.00 |
| 24RAN009 | 205.54   | 207.50 | 1.96            | 11305            | 0.00 | 0.00 | 0.00 |
| 24RAN009 | 207.50   | 209.50 | 2.00            | 11306            | 0.00 | 0.00 | 0.00 |
| 24RAN010 | 128.00   | 130.00 | 2.00            | 11308            | 0.07 | 0.01 | 0.01 |





| Hole ID  | From (m) | To (m) | Interval    | Sample<br>Number | Ni % | Cu % | Co % |
|----------|----------|--------|-------------|------------------|------|------|------|
| 24RAN010 | 130.00   | 132.00 | (m)<br>2.00 | 11309            | 0.06 | 0.00 | 0.01 |
| 24RAN010 | 132.00   | 133.00 | 1.00        | 11311            | 0.05 | 0.00 | 0.01 |
| 24RAN010 | 133.00   | 135.00 | 2.00        | 11313            | 0.06 | 0.00 | 0.01 |
| 24RAN010 | 135.00   | 137.00 | 2.00        | 11314            | 0.06 | 0.00 | 0.01 |
| 24RAN010 | 137.00   | 139.00 | 2.00        | 11315            | 0.07 | 0.01 | 0.01 |
| 24RAN010 | 139.00   | 141.00 | 2.00        | 11316            | 0.09 | 0.01 | 0.01 |
| 24RAN010 | 141.00   | 143.00 | 2.00        | 11317            | 0.20 | 0.04 | 0.02 |
| 24RAN010 | 143.00   | 144.00 | 1.00        | 11318            | 0.30 | 0.07 | 0.03 |
| 24RAN010 | 144.00   | 145.00 | 1.00        | 11319            | 0.31 | 0.08 | 0.02 |
| 24RAN010 | 145.00   | 146.00 | 1.00        | 11321            | 0.36 | 0.10 | 0.03 |
| 24RAN010 | 146.00   | 147.00 | 1.00        | 11322            | 0.38 | 0.10 | 0.03 |
| 24RAN010 | 147.00   | 148.00 | 1.00        | 11323            | 0.32 | 0.09 | 0.03 |
| 24RAN010 | 148.00   | 149.00 | 1.00        | 11324            | 0.22 | 0.05 | 0.02 |
| 24RAN010 | 149.00   | 150.00 | 1.00        | 11325            | 0.38 | 0.11 | 0.03 |
| 24RAN010 | 150.00   | 151.00 | 1.00        | 11326            | 0.24 | 0.07 | 0.02 |
| 24RAN010 | 151.00   | 152.00 | 1.00        | 11327            | 0.17 | 0.04 | 0.02 |
| 24RAN010 | 152.00   | 153.00 | 1.00        | 11328            | 0.15 | 0.03 | 0.02 |
| 24RAN010 | 153.00   | 154.00 | 1.00        | 11329            | 0.19 | 0.06 | 0.02 |
| 24RAN010 | 154.00   | 155.00 | 1.00        | 11331            | 0.26 | 0.07 | 0.02 |
| 24RAN010 | 155.00   | 156.00 | 1.00        | 11332            | 0.11 | 0.03 | 0.02 |
| 24RAN010 | 156.00   | 157.20 | 1.20        | 11334            | 0.09 | 0.02 | 0.01 |
| 24RAN010 | 157.20   | 158.20 | 1.00        | 11335            | 0.28 | 0.07 | 0.02 |
| 24RAN010 | 158.20   | 158.70 | 0.50        | 11336            | 0.37 | 0.08 | 0.03 |
| 24RAN010 | 158.70   | 159.20 | 0.50        | 11337            | 0.25 | 0.07 | 0.02 |
| 24RAN010 | 159.20   | 159.70 | 0.50        | 11338            | 0.12 | 0.04 | 0.01 |
| 24RAN010 | 159.70   | 160.20 | 0.50        | 11339            | 0.16 | 0.04 | 0.02 |
| 24RAN010 | 160.20   | 160.70 | 0.50        | 11341            | 0.16 | 0.05 | 0.01 |
| 24RAN010 | 160.70   | 161.20 | 0.50        | 11342            | 0.20 | 0.05 | 0.02 |
| 24RAN010 | 161.20   | 161.70 | 0.50        | 11343            | 0.17 | 0.05 | 0.02 |
| 24RAN010 | 161.70   | 162.20 | 0.50        | 11344            | 0.20 | 0.05 | 0.02 |
| 24RAN010 | 162.20   | 162.70 | 0.50        | 11345            | 0.16 | 0.03 | 0.02 |
| 24RAN010 | 162.70   | 163.20 | 0.50        | 11346            | 0.13 | 0.03 | 0.02 |
| 24RAN010 | 163.20   | 163.70 | 0.50        | 11347            | 0.09 | 0.02 | 0.02 |
| 24RAN010 | 163.70   | 164.20 | 0.50        | 11348            | 0.05 | 0.01 | 0.01 |
| 24RAN010 | 164.20   | 164.70 | 0.50        | 11349            | 0.06 | 0.01 | 0.01 |
| 24RAN010 | 164.70   | 165.20 | 0.50        | 11351            | 0.22 | 0.05 | 0.03 |
| 24RAN010 | 165.20   | 165.73 | 0.53        | 11352            | 0.36 | 0.10 | 0.04 |
| 24RAN010 | 165.73   | 166.11 | 0.38        | 11353            | 1.17 | 0.07 | 0.13 |
| 24RAN010 | 166.11   | 166.61 | 0.50        | 11354            | 0.54 | 0.10 | 0.06 |
| 24RAN010 | 166.61   | 167.11 | 0.50        | 11355            | 0.56 | 0.14 | 0.06 |





| Hole ID  | From (m) | To (m) | Interval<br>(m) | Sample<br>Number | Ni % | Cu % | Co % |
|----------|----------|--------|-----------------|------------------|------|------|------|
| 24RAN010 | 167.11   | 167.61 | 0.50            | 11356            | 0.50 | 0.14 | 0.06 |
| 24RAN010 | 167.61   | 168.11 | 0.50            | 11357            | 0.81 | 0.13 | 0.09 |
| 24RAN010 | 168.11   | 168.61 | 0.50            | 11358            | 0.30 | 0.12 | 0.04 |
| 24RAN010 | 168.61   | 169.11 | 0.50            | 11359            | 0.57 | 0.14 | 0.07 |
| 24RAN010 | 169.11   | 169.61 | 0.50            | 11361            | 0.29 | 0.11 | 0.03 |
| 24RAN010 | 169.61   | 170.11 | 0.50            | 11362            | 0.30 | 0.10 | 0.04 |
| 24RAN010 | 170.11   | 170.61 | 0.50            | 11363            | 0.37 | 0.11 | 0.04 |
| 24RAN010 | 170.61   | 171.11 | 0.50            | 11364            | 0.60 | 0.15 | 0.07 |
| 24RAN010 | 171.11   | 171.61 | 0.50            | 11365            | 0.94 | 0.20 | 0.11 |
| 24RAN010 | 171.61   | 172.10 | 0.49            | 11366            | 0.77 | 0.23 | 0.09 |
| 24RAN010 | 172.10   | 172.60 | 0.50            | 11368            | 0.54 | 0.17 | 0.06 |
| 24RAN010 | 172.60   | 173.10 | 0.50            | 11369            | 0.48 | 0.16 | 0.06 |
| 24RAN010 | 173.10   | 173.60 | 0.50            | 11371            | 0.90 | 0.15 | 0.10 |
| 24RAN010 | 173.60   | 174.10 | 0.50            | 11372            | 0.52 | 0.18 | 0.06 |
| 24RAN010 | 174.10   | 174.60 | 0.50            | 11373            | 0.44 | 0.14 | 0.05 |
| 24RAN010 | 174.60   | 175.10 | 0.50            | 11374            | 0.41 | 0.33 | 0.05 |
| 24RAN010 | 175.10   | 175.60 | 0.50            | 11375            | 0.26 | 0.05 | 0.03 |
| 24RAN010 | 175.60   | 176.10 | 0.50            | 11376            | 0.27 | 0.05 | 0.03 |
| 24RAN010 | 176.10   | 176.60 | 0.50            | 11377            | 0.23 | 0.04 | 0.02 |
| 24RAN010 | 176.60   | 177.10 | 0.50            | 11378            | 0.21 | 0.04 | 0.02 |
| 24RAN010 | 177.10   | 177.60 | 0.50            | 11379            | 0.44 | 0.19 | 0.05 |
| 24RAN010 | 177.60   | 178.10 | 0.50            | 11381            | 0.43 | 0.17 | 0.05 |
| 24RAN010 | 178.10   | 178.60 | 0.50            | 11382            | 0.66 | 0.13 | 0.07 |
| 24RAN010 | 178.60   | 179.10 | 0.50            | 11383            | 0.29 | 0.04 | 0.01 |
| 24RAN010 | 179.10   | 179.50 | 0.40            | 11384            | 0.34 | 0.11 | 0.03 |
| 24RAN010 | 179.50   | 180.14 | 0.64            | 11385            | 1.58 | 0.16 | 0.15 |
| 24RAN010 | 180.14   | 180.50 | 0.36            | 11386            | 0.64 | 0.18 | 0.07 |
| 24RAN010 | 180.50   | 181.00 | 0.50            | 11387            | 0.39 | 0.28 | 0.04 |
| 24RAN010 | 181.00   | 182.00 | 1.00            | 11388            | 0.06 | 0.02 | 0.01 |
| 24RAN010 | 182.00   | 183.00 | 1.00            | 11389            | 0.02 | 0.01 | 0.00 |
| 24RAN010 | 183.00   | 184.00 | 1.00            | 11391            | 0.04 | 0.01 | 0.01 |
| 24RAN010 | 184.00   | 186.00 | 2.00            | 11393            | 0.02 | 0.01 | 0.00 |
| 24RAN010 | 186.00   | 188.00 | 2.00            | 11394            | 0.04 | 0.01 | 0.01 |
| 24RAN010 | 188.00   | 190.00 | 2.00            | 11395            | 0.04 | 0.02 | 0.01 |
| 24RAN010 | 190.00   | 192.00 | 2.00            | 11396            | 0.03 | 0.01 | 0.00 |
| 24RAN010 | 192.00   | 194.00 | 2.00            | 11397            | 0.01 | 0.01 | 0.00 |
| 24RAN010 | 194.00   | 196.00 | 2.00            | 11398            | 0.01 | 0.01 | 0.00 |
| 24RAN010 | 196.00   | 198.00 | 2.00            | 11399            | 0.01 | 0.01 | 0.00 |
| 24RAN010 | 198.00   | 199.00 | 1.00            | 11401            | 0.02 | 0.01 | 0.00 |
| 24RAN010 | 199.00   | 201.00 | 2.00            | 11402            | 0.03 | 0.02 | 0.01 |





| Hole ID  | From (m) | To (m) | Interval<br>(m) | Sample<br>Number | Ni % | Cu % | Co % |
|----------|----------|--------|-----------------|------------------|------|------|------|
| 24RAN010 | 201.00   | 203.00 | 2.00            | 11403            | 0.03 | 0.01 | 0.01 |
| 24RAN010 | 203.00   | 205.00 | 2.00            | 11404            | 0.04 | 0.01 | 0.01 |
| 24RAN010 | 205.00   | 205.30 | 0.30            | 11405            | 0.06 | 0.03 | 0.01 |
| 24RAN010 | 205.30   | 207.30 | 2.00            | 11406            | 0.04 | 0.02 | 0.01 |
| 24RAN010 | 207.30   | 209.30 | 2.00            | 11407            | 0.01 | 0.01 | 0.00 |